Comparative analysis of corrosion inhibition on mild steel by parts of anogeissus leiocarpusin acidic medium

Authors

  • S. J. I. Ibejekwe Chemistry Department, School of Sciences, FCE Pankshin, P.M.B. 027, Pankshin, Plateau, Nigeria
  • B. Eke Uche Chemistry Department, Faculty of Physical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
  • Sunday Elaigwu Chemistry Department, School of Sciences, FCE Pankshin, P.M.B. 027, Pankshin, Plateau, Nigeria
  • J. R. Waziri Chemistry Department, School of Sciences, FCE Pankshin, P.M.B. 027, Pankshin, Plateau, Nigeria

Keywords:

Anogeisuss leiocarpus, Potentiodynamic polarization (PDP), Weight loss, Gas chromatography mass spectroscopy (GCMS)

Abstract

This research investigates the corrosion inhibition by parts of Anogeisuss leiocarpus on mild steel in 0.5 M H2SO4 under temperature conditions of 30 -60 ℃ and exposure time of 3, 6 and 9 h using weight loss, and Potentiodynamic polarization (PDP) methods. The inhibition efficiencies (IE %) of the parts follows the trend: root (91.73 %) and leaf (89.64 %). The result shows with increase in the concentration (0.2 g, 0.4 g, 0.6 g and 0.8 g) of the methanol extract, inhibition efficiency (IE %) increases. Temperature and exposure time increase reveals increase in corrosion rate, hence decrease in inhibition efficiency (IE %). The gas chromatography mass spectroscopy (GCMS) result for the root and leaf reveals the phytoconstituents like Hexadecanoic acid, ethyl ester (30.42 %), DL-alpha-Hydroxylysine (18.27 %) , Glycerol 1-palmitate (17.63 %), 9-Octadecenoic acid (Z)-, methyl ester (29.45 %), Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)- (21.78%), and Norcodeine (11.21 %) respectively may be responsible for the variation in the inhibition efficiencies between root and leaf.

Dimensions

[1] C. B. Adindu, S. C. Nwanonenyi & C. B. C. Ikpa, ‘‘Experimental and computational studies of the corrosion inhibitive effects of zingiber officinalerhizomes on mild steel corrosion in acidic solutions’’, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1386. https://doi.org/10.46481/jnsps.2023.1386.

[2] T. Popoola, A. S. Grema, G. K. Latinwo, B. Gutti & A. S. Balogun, ‘‘Corrosion problems during oil and gas production and its mitigation’’, International Journal of Industrial Chemistry 35 (2013) 2228. https://doi.org/10.1186/2228.

[3] N. W. Odozi, M. C. Emesiani, C. D. Charles, B. O. Seriki & M. M. Mchihi, ‘‘Electrochemical studies of the corrosion inhibitory pothential of annona muricata leaves extracts on aluminum in hydrochloric acid medium’’, FUDMA Journal of Sciences 8 (2024) 395. https://doi.org/10.33003/fjs-2024-0803-2460.

[4] L. T. Popoola, ‘‘Organic green corrosion inhibitors (OGCIs): a critical review’’, DEgruyter 37 (2019) 71. https://doi.org/10.1515/corrrev-2018-0058.

[5] M. M. Mchihi, M. C. Emesiani & J. I. Babawumi, ‘‘Inhibitory potentials of leaf extract of justicia schimperi for mild steel corrosion in hydrochloric acid medium: gravimetric, microscopic and spectroscopic studies’’, Asian Research Journal of Current Science 5 (2023) 184.

[6] V. Alexander, R. Tambun, Y. Ginting & B. Tambun, ‘‘Extraction of soursop leaves (Annona muricata L.) as a source of zinc corrosion inhibitor in sodium chloride medium’’, Voprosy khimii i khimicheskoi tekhnologii 1 (2024) 4. https://doi.org/10.32434/0321-4095-2024-152-1-4-11.

[7] H. Thacker & V. Ram, ‘‘Phoenix dactylifera L. extracts as green corrosion ınhibitor for aluminum in acidic medium’’, Journal of Scientific Research 65 (2021) 142. https://doi.org/10.37398/JSR.2021.650317.

[8] A. El Bribri, M. Tabyaoui, B. Tabyaoui, H. El Attari & B. Fouad, ‘‘The use of euphorbia falcate extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution’’, Mats Chem and Phys (Elsevier) 141 (2013) 240. https://doi.org/10.1016/j.matchemphys.2013.05.006.

[9] F. O. Nwosu & M. M. Muzakir, ‘‘Thermodynamics and adsorption studies of corrosion inhibition of mild steel using lignin from siam weed (Chromolenaodorata) in acid medium’’, J. Mat Environ Sci. 7 (2016) 1663.

[10] F. O. Nwosu & S. O. Amusat, ‘‘Corrosion inhibition of mild steel using parinari polyandra leave extracts in diluted hydrochloric acids’’, Portugaliae Electrochimica Acta 39 (2021) 431. https://doi.org/10.4152/pea.2021390605.

[11] U. B. Eke, S. Elaigwu, S.J. Ibejekwe, A. Godwin, K. B. Denji & G. Bakji, ‘‘Comparative study on antimicrobial and phytochemical properties of different fraction of anogeisuss leiocarpus root extract from Langtang L.G.A. Plateau state’’, Asian Journal of Chemical Sciences 15 (2025) 67. https://doi.org/10.9734/ajocs/2025/v15i1349.

[12] S. J. Ibejekwe, U. B. Eke, S. Elaigwu & J. I. Waziri, ‘‘Antimicrobial and phytochemical screening of different fractions of anogeisuss leiocarpus guill and perr leaf obtained from Langtang, Plateau State, Nigeria 9 (2025) 313. https://doi.org/10.33003/chemclas_2025_0901/025.

[13] S. Malhotra & A. P. Singh, ‘‘Medicinal properties of ginger (Zingiber oficinale Rosc.)’’, Nat. Prod. Radi. 2 (2003) 296. http://hdl.handle.net/123456789/12292.

[14] N. O. Eddy, ‘‘Adsorption and inhibitive properties of ethanol extract of Colocasia esculenta on the inhibition of the corrosion of mild steel in H2 SO4 ’’, Int J. Phys Sci. 4 (2009) 165. https://academicjournals.org/article/article1380619010_Eddy.pdf.

[15] I. B. Obot & N. O. Obi-Egbedi, ‘‘An interesting and efficient green corrosion inhibitor for aluminium from extracts of chlomolaena odorata L. in acidic solution’’, J Appl Electrochem 40 (2009) 1977. https://doi.org/10.1007/s10800-010-0175-x.

[16] D. Yordanov & P. Petkov, ‘‘Investigation of ethyl ester of fatty acids as corrosion inhibitors’’, Journal of the University of Chemical Technology and Metallurgy 43 (2008) 405. https://api.semanticscholar.org/CorpusID:98069247.

[17] A. Fawzy & A. Toghan, ‘‘Inhibition evaluation of chromotrope dyes for the corrosion of mild steel in an acidic environment: thermodynamic and kinetic aspects’’, ACS Omega 6 (2021) 4051. https://dx.doi.org/10.1021/acsomega.0c06121.

[18] I. A. Akpan & N. A. O. Offiong, ‘‘Inhibition of mild steel corrosion in hydrochloric acid solution by ciprofloxacin drug’’, International Journal of Corrosion 5 (2013) 1. https://doi.org/10.1155/2013/301689.

[19] E. E. Oguzie, C. Unaegbu, C. N. Ogukwe, B. N. Okolue & A. I. Onuchukwu, ‘‘Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additives’’, Mater. Chem. Phys. 84 (2004) 363. https://doi.org/10.1016/j.matchemphys.2003.11.027.

[20] T. Jeyaraj, C. Raja, M. Paramasivam & B. Jayapriya, ‘‘Inhibition of corrosion of mild steel in 10% sulfamic acid by azo dyes’’, Trans.SAEST 40 (2005) 19. https://core.ac.uk/download/pdf/34216912.pdf.

[21] V. Sivakumar, K. Velumani & S. Rameshkumar, ‘‘Colocid dye – a potential corrosion inhibitor for the corrosion of mild steel in acid media’’, Mat. Res. 21 (2018) 4. https://doi.org/10.1590/1980-5373-MR-2017-0167.

[22] G. N. Mu, X. H. Li, Q. Qu & J. Zhou, ‘‘Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution’’, Corros. Sci. 48 (2006) 445. https://doi.org/10.1016/j.corsci.2005.01.013.

Published

2025-05-04

How to Cite

Comparative analysis of corrosion inhibition on mild steel by parts of anogeissus leiocarpusin acidic medium. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 188. https://doi.org/10.61298/pnspsc.2025.2.188

How to Cite

Comparative analysis of corrosion inhibition on mild steel by parts of anogeissus leiocarpusin acidic medium. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 188. https://doi.org/10.61298/pnspsc.2025.2.188