Multisource data fusion for enhanced gold mineral prospectivity mapping in Yagba West, Kogi State: a machine learning approach

Authors

  • Momohjimoh Abdulsalami Department of Physics, Confluence University of Science and Technology, Osara, Nigeria
  • Jacob Funsho Omonile Department of Physics, Confluence University of Science and Technology, Osara, Nigeria
  • Abubakar Fahad Department of Geosciences, Confluence University of Science and Technology, Osara, Nigeria
  • Abdullateef Aliyu Department of Physics, Confluence University of Science and Technology, Osara, Nigeria
  • Muhammad Kabir Yahaya Department of Chemistry, Confluence University of Science and Technology, Osara, Nigeria

Keywords:

Gold mineral, Support vector machine, Classification and regression trees, Yagba west

Abstract

Gold mineral prospectivity mapping is crucial for identifying potential gold-bearing zones and supporting exploration efforts through advanced data analytics. However, many existing models tend to overestimate high-prospectivity areas, introducing biases toward known deposits and limiting their effectiveness in discovering new mineralized zones. To enhance exploration accuracy, data-driven approaches that enhance model interpretability and minimize predictive bias are essential. In this study, we applied Support Vector Machines (SVM) and Classification and Regression Trees (CART) to generate gold mineralization maps for Yagba West, utilizing an integrated dataset comprising SRTM DEM, Landsat 8 imagery, geological maps, and aeromagnetic data. The SVM model identified a gold-prospective area of 249.58 km² with an accuracy of 100%, while the CART model delineated a 132.13 km² prospective zone with an accuracy of 93%. This study further revealed that gold occurrences in the study area are predominantly concentrated in quartzite, quartz schist, gabbro, and quartz gabbro formations, primarily along NNE–SSW and NW–SE structural orientations, emphasizing the influence of structural controls on mineralization. These findings underscore the potential of machine learning in enhancing gold prospectivity mapping and optimizing exploration strategies in structurally controlled gold-bearing terrains.

Dimensions

[1] H. Shirmard, E. Farahbakhsh, R. D. Müller & R. Chandra, ‘‘A review of machine learning in processing remote sensing data for mineral exploration’’, Remote Sensing of Environment 268 (2022) 112750. https://doi.org/10.1016/j.rse.2021.112750.

[2] B. Pradhan, R. Jena, D. Talukdar, M. Mohanty, B. K. Sahu, A. K. Raul & K. N. Abdul Maulud, ‘‘A new method to evaluate gold mineralization-potential mapping using deep learning and an explainable artificial intelli-gence (XAI) model’’, Remote Sensing, 14 (2022) 4486. https://doi.org/10.3390/rs14184486.

[3] M. Fan, K. Xiao, L. Sun, S. Zhang & Y. Xu, ‘‘Automated Hyperparameter Optimization of Gradient Boosting Decision Tree Approach for Gold Mineral Prospectivity Mapping in the Xiong’ershan Area’’, Minerals 12 (12) (2022). https://doi.org/10.3390/min12121621.

[4] E. Bedini, ‘‘Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data’’, Remote Sensing of Environment 113 (2009) 1208. https://doi.org/10.1016/j.rse.2009.02.007.

[5] N. Zhang & K. Zhou, ‘‘Mineral prospectivity mapping with weights of evidence and fuzzy logic methods’’, Journal of Intelligent and Fuzzy Systems 29 (2015) 2639. https://doi.org/10.3233/IFS-151967.

[6] N. Kranjčić, V. Cetl, H. Matijević & D. Markovinović, ‘‘Comparing different machine learning options to map bark beetle infestations in Croatia’’, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, XLVIII-4/W72023 (2023) 83. https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-83-2023.

[7] Y. Zheng, H. Deng, R. Wang & J. Wu, ‘‘A multimodal learning framework for comprehensive 3d mineral prospectivity modeling with jointly learned structure-fluid relationships’’, Sep. 2023. [Online]. Available: http://arxiv.org/abs/2309.02911.

[8] Y. Nishitsuji & J. Nasseri, ‘‘Support-vector-machine with Bayesian optimization for lithofacies classification using elastic properties’’, Mar. 2022. [Online]. Available: http://arxiv.org/abs/2204.00081.

[9] X. Xu & Y. Wu, ‘‘Application of tree based enhanced stacking ensemble learning’’, Jan. 16, 2023. [Online]. Available at Research Square. https://doi.org/10.21203/rs.3.rs-2471395/v1.

[10] U. A. Usman, A. B. Abdulkadir, J. M. El-Nafaty, M. Bukar & S. Baba, ‘‘Lithostratigraphy and geochemical characterization of limestone deposits around Kushimaga Area in Yobe Of North-Eastern Nigeria’’, Nigerian Journal of Technology 37 (2018) 885. https://doi.org/10.4314/njt.v37i4.5.

[11] F. Abubakar, ‘‘Investigation of iron ore potential in north-central Nigeria, using high-resolution aeromagnetic dataset and remote sensing approach’’, Heliyon 10 (2024) e23618. https://doi.org/10.1016/j.heliyon.2023.e23618.

[12] F. Abubakar & I. A. Abir, ‘‘High-resolution airborne magnetic detection of iron ore deposits’’, Geosystems and Geoenvironment, 4 (2025) 100349. https://doi.org/10.1016/j.geogeo.2024.100349.

[13] K. O. Olomo, S. Bayode, O. A. Alagbe, G. M. Olayanju & O. K. Olaleye, ‘‘Aeromagnetic mapping and radioelement influence on mineralogical composition of mesothermal gold deposit in part of Ilesha schist belt, Southwestern Nigeria’’, NRIAG Journal of Astronomy and Geophysics 11 (2022) 177. https://doi.org/10.1080/20909977.2022.2057147.

[14] N. Yang, Z. Zhang, J. Yang & Z. Hong, ‘‘Applications of data augmentation in mineral prospectivity prediction based on convolutional neural networks’’, Computers & Geosciences 161 (2022) 105075. https://doi.org/10.1016/j.cageo.2022.105075.

[15] V. Nykänen, I. Lahti, T. Niiranen & K. Korhonen, ‘‘Receiver operating characteristics (ROC) as validation tool for prospectivity models - a magmatic Ni-Cu case study from the Central Lapland Greenstone Belt, North-ern Finland’’, Ore Geology Reviews 71 (2015) 853. https://doi.org/10.1016/j.oregeorev.2014.09.007.

[16] M. M. Gobashy, E. A. S. Abbas, K. S. Soliman & A. Abdelhalim, ‘‘Mapping of gold mineralization using an integrated interpretation of geological and geophysical data—a case study from West Baranes, South East-ern Desert, Egypt’’, Arabian Journal of Geosciences 15 (2022) 1692. https://doi.org/10.1007/s12517-022-10955-0.

[17] H. Shirmard, E. Farahbakhsh, R. D. Müller & R. Chandra, ‘‘A review of machine learning in processing remote sensing data for mineral exploration’’, Remote Sensing of Environment 268 (2022) 112750 https://doi.org/10.1016/j.rse.2021.112750.

[18] N. B. Salawu, J. O. Fatoba, L. S. Adebiyi, M. M. Orosun & S. S. Dada, ‘‘New insights on the Ife-Ilesha schist belt using integrated satellite, aero-magnetic and radiometric data’’, Scientific Reports 11 (2021) 15314. https://doi.org/10.1038/s41598-021-94813-1.

[19] A. B. Pour & M. Hashim, ‘‘ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration’’, SpringerPlus 3 (2014) 130. https://doi.org/10.1186/2193-1801-3-130.

[20] Y. A. Omanayin, N. M. Waziri, U. S. Onoduku, A. A. Alabi & A. N. Amadi, ‘‘Geology and geochemistry of pegmatites of Ogodo – Odobola, North Central Nigeria: a status review’’, FUDMA Journal of Sciences 6 (2023) 15. https://doi.org/10.33003/fjs-2022-0606-1140.

[21] A. O. Oyinloye, ‘‘The geology and geochemistry of the Precambrian rocks in southwestern Nigeria: implications on provenance and geotectonic setting’’, International Journal of Geosciences, 2 (2011) 271. https://doi.org/10.4236/ijg.2011.23029.

[22] I. B. Odeyemi, ‘‘A review of the orogenic events in the Precambrian basement of Nigeria, West Africa’’, Geol. Rundsch. 70 (1981) 897. https://doi.org/10.1007/BF01820170.

[23] I. Garba, ‘‘Late pan-African tectonics and the origin of gold mineralization and rare-metal pegmatites in the Kushaka schist belt, northwestern Nigeria’’, Journal of African Earth Sciences, 35 (2002) 167. https://doi.org/10.1016/S0899-5362(02)00027-6.

[24] USGS, ‘‘Landsat 8-9 calibration and validation algorithm description document’’, U.S. Geological Survey, 2021. [Online]. https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1747_Landsat8-9_CalVal_ADD-v4.pdf.

[25] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank & D. Alsdorf, ‘‘The shuttle radar topography mission’’, Reviews of Geophysics 45 (2007) 2. https://doi.org/10.1029/2005RG000183.

[26] J. R. Harris, J. Ayer, M. Naghizadeh, R. Smith, D. Snyder, P. Behnia, M. Parsa, R. Sherlock & M. Trivedi, ‘‘A study of faults in the Superior province of Ontario and Quebec using the random forest machine learning algorithm: Spatial relationship to gold mines’’, Ore Geology Reviews 157 (2023) 105403. https://doi.org/10.1016/j.oregeorev.2023.105403.

[27] B. Schölkopf, ‘‘Causality for machine learning’’, in Probabilistic and causal inference: the works of Judea Pearl, H. Geffner, R. Dechter & J. Y. Halpern (Eds.), Association for Computing Machinery, New York, NY, 2022, pp. 765–804. https://doi.org/10.1145/3501714.3501755.

[28] R. Zuo & E. J. M. Carranza, ‘‘Support vector machine: a tool for mapping mineral prospectivity’’, Computers & Geosciences 37 (2011) 1956. https://doi.org/10.1016/j.cageo.2011.04.019.

[29] Y. Nishitsuji & J. Nasseri, ‘‘Support-vector-machine with Bayesian optimization for lithofacies classification using elastic properties’’, ArXiv Preprint, 2022. [Online]. Available: http://arxiv.org/abs/2204.00081.

[30] L. Breiman, J. H. Friedman, R. A. Olshen & C. J. Stone, Classification and Regression Trees, Chapman and Hall/CRC, 1984. https://doi.org/10.1201/9781315139470.

[31] G. De’ath & K. E. Fabricius, ‘‘Classification and regression trees: a powerful yet simple technique for ecological data analysis’’, Ecology 81 (2000) 3178. https://doi.org/10.1890/0012-9658(2000)081%5B3178:CARTAP%5D2.0.CO;2.

Published

2025-04-13

How to Cite

Multisource data fusion for enhanced gold mineral prospectivity mapping in Yagba West, Kogi State: a machine learning approach. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 182. https://doi.org/10.61298/pnspsc.2025.2.182

How to Cite

Multisource data fusion for enhanced gold mineral prospectivity mapping in Yagba West, Kogi State: a machine learning approach. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 182. https://doi.org/10.61298/pnspsc.2025.2.182