Synthesis, characterization, and antimicrobial activity of Ni (II) and Cu (II) complexes with schiff base derived from pyrrole-2-carboxaldehyde and thiosemicarbazide

Authors

  • B. L. Abdullahi Department of Pure and Industrial Chemistry, Bayero University, P. M. B. 3011, Kano, Nigeria
  • H. N. Aliyu Department of Pure and Industrial Chemistry, Bayero University, P. M. B. 3011, Kano, Nigeria

Keywords:

Synthesis, Schiff base, Thiosemicarbazide, Pyrrole-2-carboxaldehyde, Antimicrobial activity

Abstract

A novel Schiff base ligand was synthesized from the condensation of substituted thiosemicarbazide and 1H- 1H-pyrrole-2-carboxaldehyde. The corresponding Ni(II) and Cu(II) complexes were obtained by refluxing the chloride of the metals with the prepared Schiff base in an ethanolic solution. The Schiff base and its complexes were characterized and analyzed using Fourier Transform Infrared (FT-IR), UV-visible, magnetic susceptibility, conductivity measurement, melting point/decomposition temperature, and solubility test. The Infrared spectral data of the Schiff base showed an absorption band at 1585 cm-1, attributed to ν(C=N) stretching. However, this band was shifted to a higher frequency of 1590cm-1 and 1596cm-1 indicating the formation of a Ni-N and Cu-N band in the complexes respectively. The UV-Visible studies revealed significant red shifts in the characteristics C=N and C=S bands upon complexation confirming strong ligand-metal coordination. The complexes exhibited enhanced thermal stability (with decomposition temperatures of 217°C for Ni(II), 205°C for Cu(II) ). Magnetic measurements indicated a high-spin octahedral geometry for the Ni(II) complex (µ-eff =2.9B.M) and a distorted octahedral (Jahn-Teller) geometry for the Cu(II) complex (µ-eff =1.90B.M). The molar conductance value of the Ni(II) complex was observed at 38.20 ohm-1 cm2 mol-1 while that of the Cu(II) complex was observed at 24.20 ohm-1 cm2 mol-1 suggesting non-electrolytic nature of the complexes. The Schiff base and the complexes were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa (Bacterial strains), Candida albicans, Tinea capitis and Tinea pedis (fungal strains with Ciprofloxacin and Ketoconazole serving as control drugs for bacteria and fungi, respectively. The results demonstrated that metal complexation significantly enhances bioactivity relative to the free ligand, although their activity was lower than that of the standards.

Dimensions

[1] G. Balachandran, A. Dhamotharan, K. Kaliyamoorty, K. S. Rajammal, R. Kulandaya & A. Raja, ‘‘Synthesis, characterization, and catalytic applications of schiff-base metal complexes’’, Journal of Engineering Proceedings 61 (2024) 26. http://dx.doi.org/10.3390/engproc2024061026.

[2] M. S. Sinicropi, J. Ceramella, D. Jacopetta, A. Catalano, A. Mariconda, C. Rosano, C. Satumino, H. El-Kashef & P. Longo, ‘‘Metal complexes with schiff bases: data collection and recent studies on biological activities’’, Journal of Molecular Science 23 (2022) 14840. https://doi.org/10.3390/ijms232314840.

[3] A. Kanwal, B. Parveen, R. Ashraf, N. Haider & K. G. Ali, ‘‘A review on synthesis and applications of some selected schiff bases with their transition metal complexes’’, Journal of coordination chemistry 75 (2022) 19. https://doi.org/10.1080/00958972.2022.2138364.

[4] A. P Mishra & S. Monica, ‘‘Synthesis, structural, and biological studies of some schiff bases and their metal complexes’’, Metal-Based Drugs 7 (2008) 875410. https://doi.org/10.1155/2008/875410.

[5] M. A. Lotfi, K. A. Sadeeq, A. A. Laila, M. Sabri, A. M. Jazeem, Y. A. Mohammad & M. A. Wafa, ‘‘Synthesis and characterization of different complexes derived from schiff Base and evaluation as a potential anticancer, antimicrobial and insecticide agent’’, Journal of Biological Sciences 30 (2023) 3. https://doi.org/10.1016/j.sjbs.2023.103598.

[6] A. Soroceanu & A. Bargan, ‘‘Advanced and biomedical applications of schiff-base ligands and their metal complexes: a review’’, Crystals 12 (2022) 1436. https://doi.org/10.3390/cryst12101436.

[7] N. Sourav, D. Abhijit, D. Arjit & A. Suman, ‘‘Metal-based dugs in cancer therapy’’, International Journal of Experimental Research and Review 37 (2024) 159. https://doi.org/10.52756/ijerr.2024.v37spl.014.

[8] A. Hheidari, J. Mohammad, M. Ghodousi, M. Mahmoodi, S. Ebrahimi, E. Pishbin & A. Rahdar, ‘‘Metal-based nanoparticles in cancer treatment: lessons, learned and challenges’’, Front. Bioeng. Biotechnol. 12 (2024) 1436297. https://doi.org/10.1039/D3DT00000X.

[9] P. Shreyas, G. Shubhankar, K. Ravi Teja & P. Malay, ‘‘Challenges and opportunities in the development of metal-based anticancer theranostic agents’’, Biosci Rep 42 (2022) 5. https://doi.org/10.1042/bsr20212160.

[10] I. Domenico, C. Jessica, C. Alessia, M. Annaluisa, G. Federica, S. Carmela, L.Pasquale & S. S. Maria, ‘‘Metal complexes with schiff bases as antimicrobials and catalysts’’, Inorganics 11 (2023) 8. https://doi.org/10.3390/inorganics11080320.

[11] S. S. El-Sayed, T. M. Al-Harbi, A. N. Al-Hakimi & M. M. Abd El-Hady, ‘‘Synthesis and characterization of a metal complexes based on aniline derivative schiff base for antimicrobial applications and UV protection of a modified cotton fabric’’, Journal of Coatings 12 (2022) 8. https://doi.org/10.3390/coatings12081181.

[12] C. Takeda, D. Nakane & T. Akitsu, ‘‘Recent advances in chiral schiff base compounds in 2023’’, Molecules 28 (2023) 7990. https://doi.org/10.3390/molecules28247990.

[13] M. Chandra, K. Vinod & K. Sarla, ‘‘Synthesis, characterization and antibacterial activity of Schiff bases derived from thiosemicarbazide, 2-acetylthiophene and thiophene-2-aldehyde’’, Int. Res. J. pharm. 9 (2018) 153. http://dx.doi.org/10.7897/2230-8407.097141.

[14] L. A. Alfonso-Herrera, S. Rosette-Luna, D. Hernandez-Romero, J. M. Rivera-Villanueva, J. L. Olivares-Romero, J. A. Cruz-Navarro, A. Soto-Contreras, A. Arenaza-Corona, D. Morales-Morales & R. Colorado-Peralta, ‘‘Transition metal complexes with tridentate schiff bases (ONO and ONN) derived from salicylaldehyde: an analysis of their potential anticancer activity’’, ChemMedChem 17 (2022) e202200367. https://doi.org/10.1002/cmdc.202200367.

[15] P. S. Saini, V. Kumar, A. K Gupta, G. K. Gupta, ‘‘Synthesis, characterization and antibacterial activity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series’’, Medicinal Chemistry Research 23 (2014) 690. https://doi.org/10.1007/s00044-013-0657-6.

[16] B. Kenan, T. Nevin, A. Ayhan, C. Naki & O. Ismail, ‘‘Synthesis, characterization and catalytic activities of some Schiff base ligands and Pd(II) complexes containing substituted groups’’, Journal of Molecular Structure 1309 (2024) 138185. https://doi.org/10.1016/j.molstruc.2024.138185.

[17] T. J. Saritha & P. Metilda, ‘‘Synthesis, spectroscopic characterization and biological applications of some novel Schiff base transition metal(II) complexes derived from curcumin moiety’’, Journal of Saudi Chemical Society 25 (2021) 101245. https://doi.org/10.1016/j.jscs.2021.101245.

[18] I. Tariqul, B. Nur Amin, H. Faruk, A. Ali & Z. Kudrate, ‘‘Investigation on biological activities of thiosemicarbazide derived schiff base metal complexes’’, Asian Journal of Research in Chemistry 17 (2024) 6-2. https://doi.org/10.52711/0974-4150.2024.00002.

[19] A. A. Aly, E. M. Abdallah, S. A. Ahmed, M. M. Rabee & S. Brase, ‘‘Transition metal complexes of thiosemicarbazides, thiocarbohydrazides and their corresponding carbazones with Cu(I), Cu(II), Ni(II), Pd(II), and Ag(I): a Review’’, Molecules 28 (2023) 1808. https://doi.org/10.3390/molecules28041808.

[20] T. Geetha & S. Santhi, ‘‘Synthesis, characterization, dft studies and electrochemical biological application studies of a new schiff base on from naphthalene-1,8-diamine and its Co(II), Ni(II), Cu(II) and Zn(II) Complexes’’, Oriental Journal of Chemistry 40 (2024) 6. https://dx.doi.org/10.13005/ojc/400631.

[21] G. Venkatesh, P. Vennila, S. Kaya, S. Ben Ahmed, P. Sumathi, V. Siva, P. Rajendran & C. Kamal, ‘‘Synthesis and spectroscopic characterization of schiff base metal complexes, biological activity and molecular docking studies, ACS Omega 9 (2024) 8123. https://doi.org/10.1021/acsomega.3c08526.

[22] F. Hoque, N. Nahar, F. S. Annie, A. Rahim, M. K. Hossain, M. N. Abdul Rahman, K. A. A. Alkadi, R. B. Shardin, N. A. Sulong & A. Azad, ‘‘Synthesis, characterization and complexation of schiff base ligand p-anisalcefuroxime with cu2+ and fe3+ ions; antimicrobial and docking analysis with PBP2xto study pharmacokinetic parameters’’, Mediterr. J. Pharm Sci. 5 (2025) 48. https://doi.org/10.5281/zenodo.14647651.

[23] S. S. Sadu, S. J. Bhimane & S. Harshavardhan, ‘‘Synthesis and characterization of schiff base metal complexes derived from Napthofuran-2-Carbohydrazide and 4(methylthio)benzaldehyde’’, Int. J. of Sci. Res. Archive 7 (2022) 466. https://doi.org/10.30574/ijsra.2022.7.2.0312.

[24] A. K.Suleiman, A. H. Sadi, A.Hadiza & D. Aminu, ‘‘Synthesis, characterization and antimicrobial evaluation of Schiff base transition metal complexes of (E)-2-methoxybenzylidene amino phenol’’, Journal of chemical sciences 11 (2023) 100. https://www.unn.edu.ng/wp-content/uploads/2023/06/Synthesis-Characterization-And-Antimicrobial-Evaluation-Of-Schiff-Base-Transition-Metal-Complexes.pdf.

[25] R. Giernoth, Solvents and Solvent Effects in Organic Chemistry, 4th Edition, Wiley, 2011, pp. 11289-11289. https://doi.org/10.1002/anie.201105531.

[26] N. B. Jitendra & S. R. Shankarsing, ‘‘Design, synthesis and biological properties of transition metal complexes of schiff base ligand derived from pyridine derivaties’’, J. Adv .Sci. Res. 13 (2022) 10. https://sciensage.info/index.php/JASR/article/view/1892.

[27] I. Waziri, O. O. Wahab, G. A. Mala, S. O. Oselusi, S. A. Egieyeh & H. Nasir, ‘‘Zinc (II) complex of (Z)-4-((4-Nitrophenyl)Amino)Pent-3-en-2-one, a potential antimicrobial agent: synthesis, characterization, antimicrobial screening, dft calculation and docking study’’, Bull. Hem. Soc. Ethiop. 37 (2023) 3. https://dx.doi.org/10.4314/bcse.v37i3.8.

[28] A. Sayeed, J. Na’aliya & W. Ethan, ‘‘Synthesis, characterization and antimicrobial studies of metal(II) complexes with 4-methoxybenzaldehyde with p-anisidine’’, Global Journal of Pure and Applied Chemistry Research 10 (2022) 1. https://doi.org/10.37745/gjpacr.2013/vol10no1pp.23-38.

[29] S. Karthik, P. Priyab & T. Gomathi, ‘‘Synthesis, characterization, antimicrobial, anti-diabetic, anti-inflammatory and anti-cancer studies of Schiff base metal(II) complexes derived from mixed Schiff base ligands’’, Indian Journal of Chemistry 63 (2024) 112. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://or.niscpr.res.in/index.php/IJC/article/view/4556&ved=2ahUKEwjgzevQtNKMAxWKWUEAHV0SFDAQFnoECBIQAQ&usg=AOvVaw2LE6mqP8YXOH__MOhEiOhm.

Published

2025-04-14

How to Cite

Synthesis, characterization, and antimicrobial activity of Ni (II) and Cu (II) complexes with schiff base derived from pyrrole-2-carboxaldehyde and thiosemicarbazide. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 176. https://doi.org/10.61298/pnspsc.2025.2.176

How to Cite

Synthesis, characterization, and antimicrobial activity of Ni (II) and Cu (II) complexes with schiff base derived from pyrrole-2-carboxaldehyde and thiosemicarbazide. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 176. https://doi.org/10.61298/pnspsc.2025.2.176