Optimizing energy efficiency in IoT networks for sustainable smart cities: a focus on energy-efficient communication protocols

Authors

  • Nubunga Ishaya Department of Computer Science, Federal University of Education, Zaria, Kaduna State
  • Hakeem Adewale Sulaimon Department of Computer Science, Federal University of Education, Zaria, Kaduna State
  • Hadiza Abdullahi Department of Economics, Federal University of Education, Zaria, Kaduna State

Keywords:

Energy-efficient IoT protocols, Smart city sustainability, Hybrid energy harvesting

Abstract

The rapid expansion of the Internet of Things (IoT) is driving the development of smart cities by improving connectivity and automation. However, the increasing number of IoT devices raises concerns about energy consumption, device longevity, and network sustainability. High energy demands lead to higher costs and limit large-scale deployments. To address these issues, energy-efficient protocols are essential for optimizing power consumption while maintaining network reliability. Key strategies include adaptive power control, duty cycling, and hybrid energy harvesting. The Hybrid Energy Harvesting-Based Energy Neutral Operation Medium Access Control (HENO-MAC) protocol integrates solar and wind energy to support energy-neutral operations. Additionally, advanced Medium Access Control (MAC) and routing protocols, such as the Routing Protocol for Low-Power and Lossy Networks (RPL), help minimize energy wastage. Emerging communication standards like Thread 1.4 further enhance energy efficiency and security. This study evaluates state-of-the-art energy-efficient IoT protocols in smart urban environments, analyzing technologies such as (Message Queuing Telemetry Transport) MQTT, RPL, and Constrained Application Protocol (CoAP). It also explores AI-driven energy management, edge computing, and energy-harvesting IoT systems. Through case studies from smart city initiatives in Barcelona and Singapore, the research highlights best practices for improving sustainability in IoT-driven cities.

Dimensions

[1] H. I. Khalil, N. Z. Jhanjhi, M. Humayun, S. Sivanesan, M. Masud & M. S. Hossain, ‘‘Hybrid smart grid with sustainable energy efficient resources for smart cities’’, Sustain. Energy Technol. Assess. 46 (2021) 101211. https://doi.org/10.1016/j.seta.2021.101211.

[2] L. Atzori, A. Iera & G. Morabito, ‘‘The internet of things: a survey’’, Comput. Netw. 54 (2010) 2787. https://doi.org/10.1016/j.comnet.2010.05.010.

[3] R. Al-Ali, ‘‘Internet of things role in the renewable energy resources’’, Energy Procedia 100 (2016) 34. https://doi.org/10.1016/j.egypro.2016.10.144.

[4] A. Yassine, S. Singh, M. S. Hossain & G. Muhammad, ‘‘IoT big data analytics for smart homes with fog and cloud computing’’, Future Generation Computer Systems 91 (2019) 563. https://doi.org/10.1016/j.future.2018.08.040.

[5] L. Zhang & P. Lin, ‘‘Reinforcement learning based energy-neutral operation for hybrid EH powered TBAN’’, Future Generation Computer Systems 140 (2023) 311. https://doi.org/10.1016/j.future.2022.10.037.

[6] R. Yadav & V. Kumar, ‘‘A systematic review paper on energy-efficient routing protocols in internet of things’’, IETE J. Res. 70 (2023) 4721. https://doi.org/10.1080/03772063.2023.2230169.

[7] D. Hemanand, C. A. Bhuvaneswari, S. Savitha, M. Jothi & R. R. Senthil, ‘‘Optimizing energy-efficient communication protocols for IoT devices in smart cities using Narrowband IoT and LTE-M technology’’, J. Electr. Syst. 20 (2024) 2149. https://doi.org/10.52783/jes.2560.

[8] A. M. Abbas, K. Y. Youssef, I. I. Mahmoud & A. Zekry, ‘‘NB-IoT optimization for smart meters networks of smart cities: Case study’’, Alexandria Engineering Journal 59 (2020) 4267. https://doi.org/10.1016/j.aej.2020.07.030.

[9] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari & M. Ayyash, ‘‘Internet of things: a survey on enabling technologies, protocols, and applications’’, IEEE Communications Surveys & Tutorials 24 (2022) 234. https://doi.org/10.1109/comst.2015.2444095.

[10] H. M. B. Hassan, E. S. Ali, R. A. Mokhtar, R. A. Saeed & B. S. Chaudhari, ‘‘6 - NB-IoT: concepts, applications, and deployment challenges’’, in LP-WAN Technologies for IoT and M2M Applications, Academic Press, 2020, pp. 119-144. https://doi.org/10.1016/B978-0-12-818880-4.00006-5.

[11] C. Bormann, A. P. Castellani & Z. Shelby, ‘‘CoAP: an application protocol for billions of tiny internet nodes’’, IEEE Internet Computing 16 (2012) 62. https://doi.org/10.1109/MIC.2012.29.

[12] F. S. Hafez, B. Sa’di, M. Safa-Gamal, Y. H. Taufiq-Yap, M. Alrifaey, M. Seyedmahmoudian, A. Stojcevski, B. Horan & S. Mekhilef, ‘‘Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and path-ways for future research’’, Energy Strategy Reviews 45 (2023) 101013. https://doi.org/10.1016/j.esr.2022.101013.

[13] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman & D. O. Wu, ‘‘Edge computing in industrial internet of things: architecture, advances and challenges’’, IEEE Communications Surveys & Tutorials 22 (2020) 2462. https://doi.org/10.1109/COMST.2020.3009103.

[14] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan & Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in 5g heterogeneous networks’’, IEEE Access 4 (2016) 5896. https://doi.org/10.1109/ACCESS.2016.2597169.

[15] B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu & T. Freiheit, ‘‘Smart manufacturing and intelligent manufacturing: a comparative review’’, Engineering 7 (2021) 738. https://doi.org/10.1016/j.eng.2020.07.017.

[16] C. Zoghlami, R. Kacimi & R. Dhaou, ‘‘5G-enabled V2X communications for vulnerable road users safety applications: a review’’, Wireless Netw 29 (2023) 1237. https://doi.org/10.1007/s11276-022-03191-7.

[17] Z. Shah, A. Levula, K. Khurshid, J. Ahmed, I. Ullah & S. Singh, ‘‘Routing protocols for mobile internet of things (IoT): a survey on challenges and solutions’’, Electronics 10 (2021) 2320. https://doi.org/10.3390/electronics10192320.

[18] S. Popli, R. K. Jha & S. Jain, ‘‘A survey on energy efficient narrowband internet of things (NBIoT): architecture, application and challenges’’, IEEE Access 7 (2019) 16739. https://doi.org/10.1109/ACCESS.2018.2881533.

[19] A. E. Hassani, A. Sahel & A. Badri, ‘‘IRH-OF: a new objective function for rpl routing protocol in IoT applications’’, Wireless Pers Commun 119 (2021) 673. https://doi.org/10.1007/s11277-021-08230-8.

[20] S. Duquennoy, B. Al Nahas, O. Landsiedel & T. Watteyne, ‘‘Orchestra: robust mesh networks through autonomously scheduled TSCH’’, Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys ’15), Association for Computing Machinery 13 (2015) 337. https://doi.org/10.1145/2809695.2809714.

[21] Z. H. Ali, N. A. Sakr, N. El-Rashidy & H. A. Ali, ‘‘A reliable position-based routing scheme for controlling excessive data dissemination in vehicular ad-hoc networks’’, Computer Networks 229 (2023) 109785. https://doi.org/10.1016/j.comnet.2023.109785.

[22] M. Baniata, H. T. Reda, N. Chilamkurti & A. Abuadbba, ‘‘Energy-efficient hybrid routing protocol for IoT communication systems in 5G and beyond’’, Sensors 21 (2021) 537. https://doi.org/10.3390/s21020537.

[23] J. V. V. Sobral, J. J. P. C. Rodrigues, R. A. L. Rabêlo, J. Al-Muhtadi & V. Korotaev, ‘‘Routing protocols for low power and lossy networks in Internet of Things applications’’, Sensors 19 (2019) 2144. https://doi.org/10.3390/s19092144.

[24] N. Makarem, W. B. Diab, I. Mougharbel & N. Malouch, ‘‘On the design of efficient congestion control for the Constrained Application Protocol in IoT’’, Computer Networks 207 (2022) 108824. https://doi.org/10.1016/j.7comnet.2022.108824.

[25] L. Huang & Q. Yu, ‘‘Mobility-aware and energy-efficient offloading for mobile edge computing in cellular networks’’, Ad Hoc Networks 158 (2024) 103472. https://doi.org/10.1016/j.adhoc.2024.103472.

[26] M. Alonso, H. Amaris, D. Alcala & D. M. Florez R., ‘‘Smart sensors for smart grid reliability’’, Sensors 20 (2020) 2187. https://doi.org/10.3390/s20082187.

[27] M. Humayun, M. S. Alsaqer & N. Jhanjhi, ‘‘Energy optimization for smart cities using IoT’’, Applied Artificial Intelligence 36 (2022) 2037255. https://doi.org/10.1080/08839514.2022.2037255.

[28] K. H. Bachanek, B. Tundys, T. Wiśniewski, E. Puzio & A. Maroušková, ‘‘Intelligent street lighting in a smart city concepts–a direction to energy saving in cities: an overview and case study’’, Energies 14 (2021) 3018. https://doi.org/10.3390/en14113018.

[29] S. Alzahrani, A. Salh, L. Audah, M. A. Alhartomi, A. Alotaibi & R. Alsulami, ‘‘Empowering energy-sustainable IoT devices with harvest energy-optimized deep neural networks’’, IEEE Access 12 (2024) 70600. https://doi.org/10.1109/ACCESS.2024.3399563.

[30] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi & M. Mustaqim, ‘‘Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios’’, IEEE Access 8 (2020) 23022. https://doi.org/10.1109/ACCESS.2020.2970118.

[31] A. Tabouche, B. Djamaa & M. R. Senouci, ‘‘Traffic-aware reliable scheduling in TSCH networks for Industry 4.0: A systematic mapping review’’, IEEE Commun. Surv. Tutor. 25 (2023) 2834. https://doi.org/10.1109/COMST.2023.3302157.

[32] S. Rekik, N. Baccour, M. Jmaiel, K. Drira, L. A. Grieco, ‘‘Autonomous and traffic-aware scheduling for TSCH networks’’, Computer Networks 135 (2018) 201. https://doi.org/10.1016/j.comnet.2018.02.023.

[33] Q. V. Khanh, V. H. Nguyen, Q. N. Minh, A. D. Van, N. L. Anh & A. Chehri, ‘‘An efficient edge computing management mechanism for sustainable smart cities’’, Sustain. Comput. Inform. Syst. 38 (2023) 100867. https://doi.org/10.1016/j.suscom.2023.100867.

[34] I. Aqeel, ‘‘Enhancing security and energy efficiency in wireless sensor networks for IoT applications’’, Journal of Electrical Systems 20 (2024) 807. https://doi.org/10.52783/jes.1378.

[35] S. Hudda, K. Haribabu & R. Barnwal, ‘‘Energy efficient data communication for WSN based resource constrained IoT devices’’, Internet of Things 27 (2024) 101329. https://doi.org/10.1016/j.iot.2024.101329.

[36] P. S. Bangare & K. P. Patil, ‘‘Enhancing MQTT security for internet of things: Lightweight two-way authorization and authentication with advanced security measures’’, Measurement: Sensors 33 (2024) 101212. https://doi.org/10.1016/j.measen.2024.101212.

[37] O. O. Ogundile, M. B. Balogun, O. E. Ijiga & E. O. Falayi, ‘‘Energy-balanced and energy-efficient clustering routing protocol for wireless sensor networks’’, IET Commun. 13 (2019) 1419. https://doi.org/10.1049/iet-com.2018.6163.

[38] M. Whaiduzzaman, A. Barros, M. Chanda, S. Barman, T. Sultana, M. S. Rahman, S. Roy & C. Fidge, ‘‘A review of emerging technologies for IoT-based smart cities’’, Sensors 22 (2022) 9271. https://doi.org/10.3390/s22239271.

[39] A. R. Javed, F. Shahzad, S. ur Rehman, Y. B. Zikria, I. Razzak, Z. Jalil & G. Xu, ‘‘Future smart cities: requirements, emerging technologies, applications, challenges, and future aspects’’, Cities 129 (2022) 103794. https://doi.org/10.1016/j.cities.2022.103794.

[40] S. Rabah, A. Zaier, J. Lloret & H. Dahman, ‘‘Efficiency enhancement of a hybrid sustainable energy harvesting system using HHHOPSO-MPPT for IoT devices’’, Sustainability 15 (2023) 10252. https://doi.org/10.3390/su151310252.

[41] X. Yu, X. Yang, Q. Tan, C. Shan & Z. Lv, ‘‘An edge computing based anomaly detection method in IoT industrial sustainability’’, Appl. Soft Comput. 128 (2022) 109486. https://doi.org/10.1016/j.asoc.2022.109486.

Published

2025-04-27

How to Cite

Optimizing energy efficiency in IoT networks for sustainable smart cities: a focus on energy-efficient communication protocols. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 173. https://doi.org/10.61298/pnspsc.2025.2.173

How to Cite

Optimizing energy efficiency in IoT networks for sustainable smart cities: a focus on energy-efficient communication protocols. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 173. https://doi.org/10.61298/pnspsc.2025.2.173