A grid-based sectoring for energy-efficient wireless sensor networks

Authors

  • Nubunga Ishaya Department of Computer Science, Federal University of Education, Zaria, Kaduna State
  • Mustapha Aminu Bagiwa Department of Computer Science, Ahmadu Bello University, Zaria, Kaduna State

Keywords:

Wireless sensor networks, Cluster head, Game theory, Energy-efficient routing

Abstract

Extending the network lifetime of Wireless Sensor Networks (WSNs) while meeting user needs is crucial, given the limited energy capacity and rapid depletion of nodes. Clustering is an effective strategy for prolonging network lifetime by reducing energy overhead in data transmission. The Sector-Low Energy Adaptive Clustering Hierarchy (S-LEACH) method mitigates energy depletion by grouping nodes into sectors and selecting Cluster Heads (CHs) based on either the highest residual energy or a random number. However, its CH selection process remains suboptimal, leading to energy imbalance and inefficiencies due to fixed sector boundaries. This research improves CH selection by organizing sensor nodes into square grid clusters and employing a routing algorithm for randomized CH selection. Game theory (GT) and Ad hoc on Demand Vectors (AODV) were used to choose the optimal routing path, while Grey Wolf Optimization (GWO) was used to determine the optimal CHs. MATLAB 2023a was utilized for network design and algorithm implementation. After 1,000 transmission rounds, the proposed method extended the network lifetime to 582 seconds, compared to 565 seconds in S-LEACH, representing a 3% improvement. Results indicate that the proposed approach enhances network longevity and balances energy consumption across clusters, ultimately improving overall performance.

Dimensions

[1] J. Zhao, W. Wang, D. Wang, X. Wang & C. Mu, ‘‘PMHE: a wearable medical sensor assisted framework for health care based on blockchain and privacy computing’’, Journal of Cloud Computing 11 (2022) 96. https://doi.org/10.1186/s13677-022-00373-8.

[2] F. Jamil, S. Ahmad, N. Iqbal & D. H. Kim, ‘‘Towards a remote monitoring of patient vital signs based on IoT-based blockchain integrity management platforms in smart hospitals’’, Sensors 20 (2020) 2195. https://doi.org/10.3390/s20082195.

[3] S. G. Veloo, J. J. Tiang, S. Muhammad & S. K. Wong, ‘‘A hybrid solar-RF energy harvesting system based on an EM4325-embedded RFID tag’’, Electronics 12 (2023) 4045. https://doi.org/10.3390/electronics12194045.

[4] G. Jayaraman & V. R. S. Dhulipala, ‘‘FEECS: fuzzy-based energy-efficient cluster head selection algorithm for lifetime enhancement of wireless sensor networks’’, Arabian Journal of Science and Engineering 47 (2022) 1631. https://doi.org/10.1007/s13369-021-06030-7.

[5] N. Tahmasebi-Pouya, M. A. Sarram & S. Mostafavi, ‘‘A reinforcement learning-based load balancing algorithm for fog computing’’, Telecommun. Syst. 84 (2023) 321. https://doi.org/10.1007/s11235-023-01049-7.

[6] X. Yan, C. Huang, J. Gan & X. Wu, ‘‘Game theory-based energy-efficient clustering algorithm for wireless sensor networks’’, Sensors 22 (2022) 478. https://doi.org/10.3390/s22020478.

[7] F. R. Mughal, J. He, N. Zhu, S. Hussain, Z. A. Zardari, G. A. Mallah, M. J. Piran, & F. A. Dharejo, ‘‘Resource management in multi-heterogeneous cluster networks using intelligent intra-clustered federated learning’’, Computer Communications 213 (2024) 236. https://doi.org/10.1016/j.comcom.2023.10.026.

[8] N. Moussa & A. El Belrhiti El Alaoui, ‘‘An energy-efficient cluster-based routing protocol using unequal clustering and improved ACO techniques for WSNs’’, Peer-to-Peer Netw. Appl. 14 (2021) 1334. https://doi.org/10.1007/s12083-020-01056-4.

[9] B. M. Mohammed, M. Alsaadi, M. Khalaf & A. S. Awad, ‘‘Game theory-based multi-hop routing protocol with metaheuristic optimization-based clustering process in WSN for precision agriculture’’, J. Eur. Syst. Autom. 57 (2024) 653. https://doi.org/10.18280/jesa.570302.

[10] V. Cherappa, T. Thangarajan, S. S. Meenakshi Sundaram, F. Hajjej, A. K. Munusamy & R. Shanmugam, ‘‘Energy-efficient clustering and routing using ASFO and a cross-layer-based expedient routing protocol for wireless sensor networks’’, Sensors 23 (2023) 2788. https://doi.org/10.3390/s23052788.

[11] N. N. Sulthana & M. Duraipandian, ‘‘EELCR: energy efficient lifetime aware cluster based routing technique for wireless sensor networks using optimal clustering and compression’’, Telecommunication Systems 85 (2024) 103. https://doi.org/10.1007/s11235-023-01068-4.

[12] C. Lei, ‘‘An energy-aware cluster-based routing in the Internet of Things using particle swarm optimization algorithm and fuzzy clustering’’, Journal of Engineering and Applied Sciences 71 (2024) 135. https://doi.org/10.1007/s12046-023-02371-1.

[13] A. Shahraki, A. Taherkordi, Ø. Haugen & F. Eliassen, ‘‘Clustering objectives in wireless sensor networks: A survey and research direction analysis’’, Comput. Netw. 180 (2020) 107376. https://doi.org/10.1016/j.comnet.2020.107376.

[14] Y. Tripathi, A. Prakash & R. Tripathi, ‘‘An optimum transmission distance and adaptive clustering based routing protocol for cognitive radio sensor network’’, Wirel. Pers. Commun. 116 (2021) 907. https://doi.org/10.1007/s11277-020-07745-w.

[15] S. M. Hashemi, A. Sahafi, A. M. Rahmani & M. Bohlouli, ‘‘Energy-aware resource management in fog computing for IoT applications: a review, taxonomy, and future directions’’, Softw. Pract. Exp. 54 (2024) 109. https://doi.org/10.1002/spe.3273.

[16] G. Simionato & M. G. C. A. Cimino, ‘‘Swarm intelligence for hole detection and healing in wireless sensor networks’’, Comput. Netw. 250 (2024) 110538. https://doi.org/10.1016/j.comnet.2024.110538.

[17] Z. Sun, M. Wei, Z. Zhang & G. Qu, ‘‘Secure routing protocol based on multi-objective ant-colony-optimization for wireless sensor networks’’, Appl. Soft Comput. 77 (2019) 366. https://doi.org/10.1016/j.asoc.2019.01.034.

[18] Y. Zhang, X. Li & L. Wang, ‘‘Priority/demand-based resource management with intelligent O-RAN for energy-aware industrial Internet of Things’’, Processes 12 (2024) 2674. https://doi.org/10.3390/pr12122674.

[19] M. M. Ahmed, E. H. Houssein, A. E. Hassanien, A. Taha & E. Hassanien, ‘‘Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm’’, Telecommun. Syst. 72 (2019) 243. https://doi.org/10.1007/s11235-019-00559-7.

[20] N. C. Wang, Y. L. Chen, Y. F. Huang, C. M. Chen, W. C. Lin & C. Y. Lee, ‘‘An energy aware grid-based clustering power efficient data aggregation protocol for wireless sensor networks’’, Appl. Sci. 12 (2022) 9877. https://doi.org/10.3390/app12199877.

[21] J. Naveen, P. J. A. Alphonse & S. Chinnasamy, ‘‘3D grid clustering scheme for wireless sensor networks’’, J. Supercomput. 76 (2020) 4199. https://doi.org/10.1007/s11227-018-2306-9.

[22] A. Mosavifard & H. Barati, ‘‘An energy-aware clustering and two-level routing method in wireless sensor networks’’, Computing 102 (2020) 1653. https://doi.org/10.1007/s00607-020-00817-6.

[23] H. Singh & D. Singh, ‘‘Multi-level clustering protocol for load-balanced and scalable clustering in large-scale wireless sensor networks’’, J. Supercomput. 75 (2019) 3712. https://doi.org/10.1007/s11227-018-2727-5.

[24] R. Dhanalakshmi, S. K. S. L. Preeth, R. Kumar & P. Mohamed Shakeel, ‘‘An Agile Adaptive Clustering Algorithm for Wireless Sensor Networks Considering Energy Constraint’’, Wireless Personal Commun. 123 (2021) 909. https://doi.org/10.1007/s11277-021-09183-8.

[25] S. Elloumi, O. Hudry, E. Marie, A. Martin, A. Plateau & S. Rovedakis, ‘‘Optimization of wireless sensor networks deployment with coverage and connectivity constraints’’, Ann. Oper. Res. 298 (2021) 183. https://doi.org/10.1007/s10479-018-2943-7.

[26] A. S. Yadav, K. Khushboo, V. K. Singh & D. S. Kushwaha, "Increasing efficiency of sensor nodes by clustering in section based hybrid routing protocol with artificial bee colony’’, Procedia Comput. Sci. 171 (2020) 887.7 https://doi.org/10.1016/j.procs.2020.04.096.

[27] S. Sharmin, I. Ahmedy & R. Md Noor, ‘‘An energy-efficient data aggregation clustering algorithm for wireless sensor networks using hybrid PSO’’, Energies 16 (2023) 2487. https://doi.org/10.3390/en16052487.

[28] R. Pal, S. Yadav & R. Karnwal, ‘‘EEWC: energy-efficient weighted clustering method based on genetic algorithm for HWSNs’’, Complex Intell. Syst. 6 (2020) 391. https://doi.org/10.1007/s40747-020-00137-4.

[29] A. S. M. S. Sagar, A. Haider & H. S. Kim, ‘‘A hierarchical adaptive federated reinforcement learning for efficient resource allocation and task scheduling in hierarchical IoT network’’, Comput. Commun. 229 (2025) 107969. https://doi.org/10.1016/j.comcom.2024.107969.

[30] S. Gurumoorthy, P. Subhash, R. Pérez de Prado & M. Wozniak, ‘‘Optimal cluster head selection in WSN with convolutional neural network-based energy level prediction’’, Sensors 22 (2022) 9921. https://doi.org/10.3390/s22249921.

[31] A. Mazinani, S. M. Mazinani & M. J. M. Alyasiri, ‘‘EFTVG: An energy efficient fuzzy–timer clustering approach in an adaptive virtual grid cluster based WSN’’, Wireless Personal Commun. 137 (2024) 1069. https://doi.org/10.1007/s11277-024-11453-0.

[32] J. Mabe Parenreng, S. Gunawan Zain & M. Fajri, ‘‘Performance evaluation of hybrid system monitoring solar panels based on WSN case in smart regional drinking water company (PDAM)’’, Internet Things Artif. Intell. J. 4 (2024) 1. https://doi.org/10.31763/iota.v4i3.747.

[33] F. Kandah, J. Whitehead & P. Ball, ‘‘Towards trusted and energy-efficient data collection in unattended wireless sensor networks’’, Wireless Networks 26 (2020) 5455. https://doi.org/10.1007/s11276-020-02394-0.

[34] M. R. Ghaderi & M. Sheikhan, ‘‘An energy-aware model for wireless sensor networks: hierarchical compressive data gathering for hierarchical grid-based routing (HCDG-HGR)’’, Wireless Personal Commun. 129 (2023) 1645. https://doi.org/10.1007/s11277-023-10200-1.

[35] L. Zhang, Y. Zhou & J. Wang, ‘‘An energy saving strategy of WSNs based on data sensing and similarity’’, Wireless Personal Commun. 131 (2023) 2241. https://doi.org/10.1007/s11277-023-10540-y.

[36] G. Tsoumanis, N. Giannakeas, A. T. Tzallas, E. Glavas, K. Koritsoglou, E. Karvounis, K. Bezas & C. T. Angelis, ‘‘A traffic-load-based algorithm for wireless sensor networks' lifetime extension’’, Information 13 (2022) 202. https://doi.org/10.3390/info13040202.

[37] C. Zhang, O. Li, X. Tong, K. Ke & M. Li, ‘‘Spatiotemporal data gathering based on compressive sensing in WSNs’’, IEEE Wireless Commun. Lett. 8 (2019) 1252. https://doi.org/10.1109/LWC.2019.2912883.

[38] F. A. B. Mohammed, N. Mekky, H. H. Suleiman & N. A. Hikal, ‘‘Sectored LEACH (S-LEACH): an enhanced LEACH for wireless sensors network’’, IET Wireless Sensor Syst. 12 (2022) 56. https://doi.org/10.1049/wss2.12036.

Published

2025-04-25

How to Cite

A grid-based sectoring for energy-efficient wireless sensor networks. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 172. https://doi.org/10.61298/pnspsc.2025.2.172

How to Cite

A grid-based sectoring for energy-efficient wireless sensor networks. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 172. https://doi.org/10.61298/pnspsc.2025.2.172