Thermal properties of some selected materials used as ceilings in building

Authors

  • Godwin B. Egbeyale Department of Physics and Materials Science, Kwara State University, Malete, Nigeria
  • Adegbenro S. Ajani Department of Physics and Materials Science, Kwara State University, Malete, Nigeria
  • Tomisin M. Oyatomi Department of Physics and Materials Science, Kwara State University, Malete, Nigeria

Keywords:

Density, Thermal efficiency, Thermal absorptivity, Temperature

Abstract

Thermal properties of materials are a crucial area of interest in the building industry. This study investigated the thermal properties of Polyvinyl Chloride (PVC), Plaster of Paris (POP), asbestos, and cardboard, commonly used as ceiling materials. The steady-state method was employed to determine the thermal properties; thermal conductivity, thermal resistivity, thermal diffusivity, thermal absorptivity, and density). The obtained results of thermal conductivity of PVC, POP, and Asbestos cardboard are  0.1083 w/mk, 0.1314 w/mk,  0.1068 w/mk  and 0.0851 w/mk, respectively, and are within range of values 0.0851-0.1314 w/mk  The thermal resistivity of the cardboard, POP, Asbestos and PVC are 11.7509 (w/mk)-1, 7.6103 (w/mk)-1, 9.3633 (w/mk)-1 and 9.2336 (w/mk)-1 respectively. The results of thermal diffusivity of PVC, Asbestos,  POP,  and cardboard are 6.34 x 10-7 m2/s, 6.0 x 10-8 m2/s, 1.20 x 10-7 m2/s, and 8.0 x 10-8 m2/s respectively. The results of thermal absorptivity of cardboard, PVC, POP, and Asbestos are  21.31 x10-2 m-1, 7.57 x10-2 m-1, 17.40 x10-2 m-1, and 15.07 x10-2 m-1 respectively. The density results of POP, PVC, Asbestos, and cardboard are 79.84 kg/m3, 203.59 kg/m3, 824.13 kg/m3, and 645.81 kg/m3 respectively. The results revealed some materials' thermal properties to understand the materials' behavior as they interact with heat fluctuation. In comparison, the results revealed that PVC and asbestos are better materials for building insulation since they have good thermal efficiency.

Dimensions

S. E. Etuk, L. E. Akpabio & K. E. Akpabio, “Determination of thermal properties of Cocos Nucifera trunk for predicting temperature variation with its thickness”, The Arabian Journal for Science and Engineering 30 (2017) 121. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e932a85cc07ea12bb5ffd01a907bdfa56117d87.

I. Ugur & S. Demirdag, “Investigation of the Relation between the Specific Heat Capacity and Material Properties of Some Natural Building and Facing Stones”, International Journal of Rock Mechanics & Mining Sciences 43 (2006) 831. https://doi.org/10.1016/j.ijrmms.2005.12.003.

S. K. Alausa, O. O. Oyesiku, J. O. Aderibigbe & O.S. Akinola, “Thermal properties of calamus deërratus, raphia hookeri and synthetic board in building design in South Western Nigeria”, African Journal of Plant Science 5 (2011) 281. https://doi.org/10.5897/AJPS.9000252.

C. Michels, R. Lamberts & S. Guths, “Theoretical/Experimental Comparison of Heat Flux Reduction in Roofs Achieved through the Use of Reflective Thermal Insulators,”Energy and Buildings 40 (2008) 438. https://doi.org/10.1016/j.enbuild.2007.03.012.

N. J. George, V. I. Obianwu, G. T. Akpabio & I. B. Obot, “Comparison of thermal Insulation efficiency of some select materials used as ceiling in building design”, Archives of Applied Science Research 2 (2010) 253. http://scholarsresearchlibrary.com/archive.html.

M. Alam, S. Rahman, A. Halder, P. K. Raquib, & M. Hasan “Lee’s and charlton’smethod For investigation of thermal conductivity of insulating materials”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 3 (2012) 53. https://api.semanticscholar.org/CorpusID:11708317.

M. C. Onyeaju, E. O. Arolube, E. E. Chukwuocha, C. E. Ekuma & G. J. Omasheye, “Comparison of the thermal properties of asbestos and Polyvinylchloride Ceiling Sheets”, materials Sciences and applications 3 (2012) 240. http://dx.doi.org/10.4236/msa.2012.34035.

R. A. Serway & J. S. Faugn, College physics, 2nd edition, Saunders College Publishing, 1989, pp. 277. https://www.amazon.com/College-Physics-Revised-Raymond-Hardcover/dp/B010WFDW9S.

G. F. Newton, A. A. Roy & A. I. Solomon, “Investigation of thermal insulation properties of selected ceiling materials used in Makurdi Metropolis (Benue State, Nigeria)”, American Journal of Engineering research (AJER) 1 (2014) 245. https://api.semanticscholar.org/CorpusID:53318041.

R. C. Mohapatra, A. Mishra & B. B. Choudhury. “Experimental study on thermal conductivity of teak wood dust reinforced Epoxy composite using lee’s apparatus method”, International journal of Mechanical Engineering applications 2 (2014) 98. https://doi.org/10.11648/j.ijmea.20140206.13.

G. B. Egbeyale & J. A. Adegoke, “Influence of heavy metals on thermal conductivity of clay as a building material”, Egyptian Journal of Basic and Applied Sciences 6 (2019) 1 https://doi.org/10.1080/2314808X.2019.1670426.

A. V. Novo, J. R. Bayon, D. C.Fresno & H. J. Rodriguez, ”Review of seasonal heat storage in large basin: water tanks and gravel water”, Pits Applied Energy 87 (2010) 390. https://doi.org/10.1016/j.apenergy.2009.06.033.

E. B. Ettah, J. G. Egbe, S. A. Takim, U. P. Akpan & B. Everest, “Investigation of the thermal conductivity of polyvinyl chloride ceiling material produced in Calabar for application tropical climate zones”, Journal of Polymer and Textile Engineering (IOSR-JPTE) 3 (2016) 34. http://iosrjournals.org/iosr-jpte/papers/Vol3-issue2/E03023438.pdf.

A. A. Mohammed, V. V. S. Kesava Rao & S. R. pal singh, “Determination of thermal conductivity of plaster of Paris”, International EJournals 52 (2010) 528. https://www.scribd.com/document/477596757/iejmae-52-pdf.

S. X. Xu, Y. Li & Y. P. Feng, “Study of temperature profile and specific heat capacity in temperature modulated dsc with a low sample heat diffusivity”, Thermochimica Acta 360 (2000) 131. https://doi.org/10.1016/S0040-6031(00)00564-5.

S. Zhu, C. Li, C. H. Su, B. Lin, H. Ban, R. N. Scripa & S. L. Lehoczky, “Thermal diffusivity, thermal conductivity, and specific heat capacity measurements of molten tellurium”, Journal of Crystal Growth 250 (2003) 269. https://doi.org/10.1016/S0022-0248(02)02250-9.

Y. Zhang , K. Lin , Q. Zhang & H. Di, “Ideal thermo-physical properties for free-cooling (or heating) buildings with constant thermal physical property material”, Energy and Buildings 38 (2006) 1164. https://doi.org/10.1016/j.enbuild.2006.01.008.

Published

2024-06-28

How to Cite

Thermal properties of some selected materials used as ceilings in building. (2024). Proceedings of the Nigerian Society of Physical Sciences, 1(1), 109. https://doi.org/10.61298/pnspsc.2024.1.109

How to Cite

Thermal properties of some selected materials used as ceilings in building. (2024). Proceedings of the Nigerian Society of Physical Sciences, 1(1), 109. https://doi.org/10.61298/pnspsc.2024.1.109