Williamson-hall analysis and absorption spectrum fitting in the estimation of crystallite size and band gap energy of CdZnS thin films

Authors

Keywords:

Williamson-Hall, Energy band gap, Crstallite size

Abstract

CdZnS ternary thin film was successfully prepared from cadmium sulphide (CdS)/zinc sulphide (ZnS) bilayer and its subsequent post thermal annealing via chemical bath technique. X-ray diffraction measurement indicates that the samples presented a crystalline wurtzite phase with (002) plane as the preferred orientation. Williamson-Hall (W-H) analysis was employed to estimate the crystallite size and the microstrain. The result showed that the crystallite size decreases with increasing ZnS layer deposition times. Using the Tauc model, the absorption spectrum fitting (ASF) procedure was used to determine the optical band gap energy. The values of the band gap energy range between 3.61 and 3.66 eV, with the values increasing with ZnS layer deposition times.

Dimensions

N. Gaewdang & T. Gaewdang, ‘‘Investigations on chemically deposited Cd1−xZnxS thin films with low Zn content", Mater. Lett. 59 (2005) 3577. https://www.sciencedirect.com/science/article/abs/pii/S0167577X05006270.

M. C. Baykul & N. Orhan,‘‘Band alignment of Cd1−xZnxS produced by spray pyrolysis method", Thin Solid Films 518 (2010) 1925. https://www.sciencedirect.com/science/article/abs/pii/S0040609009012772.

L. F. M. Medina, R. Nava, María de los Ángeles Cuán Hernánde, O. S. Y.

Soria, B. Pawelec, R. M. Navarro & C. E. O. Gutiérrez,‘‘Structural, Optical and Photocatalytic Characterization of ZnxCd1−xS Solid Solutions Syn thetized Using a Simple Ultrasonic Radiation Method", Energies 13 (2020) 5603. https://www.mdpi.com/1996-1073/13/21/5603.

V. Borse, S. D. Chavhan & R. Sharma ,‘‘Growth, Structural and optical properties of Cd1−xZnxS alloy thin films grown by solution growth tech nique (SGT)", J. Alloy Comp 436 (2007) 407. https://www.sciencedirect.com/science/article/abs/pii/S0925838806017750.

D. Patidar, N. S. Saxena & T. P. Sharma,‘‘Structural, optical and electrical properties of CdZnS thin films", J. Modern Optics 55 (2008) 79. https://www.tandfonline.com/doi/abs/10.1080/09500340701292720.

F. T. Munna, V. Selvanathan, K. Sobayel, G. Muhammad, N. Asim, N. Amin, K. Sopian & M. Akhtaruzzaman, ‘‘Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell’’, Ceramics International 47 (2021) 11003. https://www.sciencedirect.com/science/article/abs/

pii/S0272884220338372.

E. A. Badawi, M. A. Abdel-Rahman, A. Mostafa & M. Abdel Rahman, ‘‘Determination of the crystallite size and micro-strain by novel method from XRD profile’’, Applied Physics 2 (2019) 1. https://www.researchgate.net/publication/334389827_Determination_of_the_Crystallite_Size_Micro-Strain_by_Novel_Method_from_XRD_Profile.

V. D. Mote, Y. Purushotham & B. N. Dole, ‘‘Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles’’, Journal of Theoretical and Applied Physics 6 (2012) 1. https://link.springer.com/article/10.1186/2251-7235-6-6.

C. Suryanarayana & M. G. Norton, X-ray Diffraction: A Practical Approach, Springer, New York, 1998, pp. 63–94. https://link.springer.com/chapter/10.1007/978-1-4899-0148-4_3.

R. B. Kale, S. D. Sartale, B. K. Chougule & C. D. Lokhande, ‘‘Growth and characterization of nanocrystalline CdSe thin films deposited by the successive ionic layer adsorption and reaction method’’, Semicond Sci Technol 19 (2004) 980. https://iopscience.iop.org/article/10.1088/0268-1242/19/8/

/meta.

N. N. Greenwood & E. A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1990. http://lib.ysu.am/disciplines_bk/931545868d143aa17a18c4ad33a7ea3e.pdf.

A. S. Hassanien & A. A. Akl, ‘‘Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films’’, Superlattices and Microstructures, 89 (2016) 153. https://www.sciencedirect.com/science/article/abs/pii/S0749603615302615.

N. F. Mott & E. A. Davis, ‘‘Electronic Process in Non Crystalline Materials’’, Physics Today 25 (1972) 55. https://pubs.aip.org/physicstoday/article-abstract/25/12/55/428211/Electronic-Processes-in-Non-Crystalline-Materials.

O. O. Olasanmi & A. Mukolu, ‘‘Variation of ZnS deposition time on chemically prepared Cd1−xZnxS ternary compound from CdS/ZnS bilayers’’, Results Opt. 11 (2023) 100419. https://doi.org/10.1016/j.rio.2023.100419.

T. P. Kumar & K. Shankarnaryanan, ‘‘Growth and Characterization of CdZnS Thin Films by Short Duration Micro Wave Assisted-Chemical Bath Deposition Technique’’, Chalcogenide Letters 6 (2009) 55. https://chalcogen.ro/555_Sankaranarayanan-24sept.pdf.

S. Sarkar & R. Das, ‘‘Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis’’, Indian Journal of Pure and Applied Physics 56 (2018) 765. http://op.niscair.res.in/index.php/IJPAP/article/view/19809.

A. A. Saad Akl & M. Elhadi, ‘‘Estimation of Crystallite Size, Lattice Parameter, Internal Strain and Crystal Impurification of Nanocrystalline Al3Ni20Bx Alloy by Williamson-Hall Method’’, Journal of Ovonic Research 16 (2020) 323. https://ksascholar.dri.sa/en/publications/estimation-of-crystallite-size-lattice-parameter-internal-strain--2.

T. O. Berestok, D. I. Kurbatov, N. M. Opanasyuk, A. D. Pogrebnjak, O.P. Manzhos & S. M. Danilchenko, ‘‘Structural Properties of ZnO Thin Films Obtained by Chemical Bath Deposition Technique’’, Journal of Nano- And Electronic Physics 5 (2013) 01009. https://jnep.sumdu.edu.ua/download/numbers/2013/1/articles/jnep_2013_V5_01009.pdf.

H. Sarma, D. Chakrabortty & K. C. Sarma, ‘‘Effect of Zinc Concentration on ZnO Nanostructured Films Synthesized by SILAR Technique’’, International Journal of Innovative Research in Science, Engineering and Technology Technique 6 (2017) 11994. https://www.semanticscholar.org/paper/Effect-of-Zinc-Concentration-on-ZnO-Nanostructured-Sarma-Chakrabortty/7badba51714ef54847ae686cc1dc7314479eb816.

M. Liu & L. Guo, Double Surfactants-assisted Hydrothermal Synthesis of Cd1-xZnxS Solid Solution as an Efficient Visible-light-driven Photocatalyst for Hydrogen Production, 18th World Hydrogen Energy Conference. WHEC, Essen, Germany,2010, 577. https://juser.fz-juelich.de/record/135523/files/HP7_4_Liu.pdf.

A. Khorsand Zak, W. H. A. Majid, M. E. Abrishami & R. Yousefi, ‘‘Xray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods’’, Solid State Sci. 13 (2011) 251. https://www.sciencedirect.com/science/article/abs/pii/S1293255810004607.

M. Zakria, A. Mahmood, A. Shah, Q. Raza, T. Muhammadkhan & E. Ahmed, ‘‘Tunability of physical properties of (Cd: Zn) S thin film by Close Space Sublimation Process (CSSP)’’, Prog. Nat. Sci. 22 (2012) 281.

https://www.sciencedirect.com/science/article/pii/S1002007112000834.

N. Ghobadi, ‘‘Band gap determination using absorption spectrum fitting procedure’’, International Nano Letters 3 (2013) 2. https://link.springer. com/article/10.1186/2228-5326-3-2.

A. Bhogi, B. Srinivas, P. Padmavathi, K. Venkataramana, K. K. Ganta, M. Shareefuddin & P. Kistaiah, ‘‘Absorption spectrum fitting method (ASF), DASF method and structural studies of Li2O–SrO–B2O3–MnO quaternary glass system’’, Optical Materials 133 (2022) 112911. https://doi.org/10.1016/j.optmat.2022.112911.

D. Souri & K. Shomalian, ‘‘Band gap determination by Absorption Spectrum Fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2– xSb2O3 glasses’’, Journal of Non-Crystalline Solids 355 (2009) 1597. http://dx.doi.org/10.1016%2Fj.jnoncrysol.2009.06.003.

XRD (X-ray Diffraction) spectral for the prepared CdS/ZnS-10, CdS/ZnS-15 and CdS/ZnS -20 samples

Published

2024-07-11

How to Cite

Williamson-hall analysis and absorption spectrum fitting in the estimation of crystallite size and band gap energy of CdZnS thin films. (2024). Recent Advances in Natural Sciences, 2(2), 81. https://doi.org/10.61298/rans.2024.2.2.81

How to Cite

Williamson-hall analysis and absorption spectrum fitting in the estimation of crystallite size and band gap energy of CdZnS thin films. (2024). Recent Advances in Natural Sciences, 2(2), 81. https://doi.org/10.61298/rans.2024.2.2.81