Microbial properties of Hibiscus sabdariffa processed through different thermal methods

Authors

  • Opeyemi Fatunla Department of Microbiology, University of Uyo, Uyo, Nigeria
  • Kate Igoche Department of Microbiology, University of Uyo, Uyo, Nigeria
  • Akindele F. Alonge Department of Agricultural and Food Engineering, University of Uyo, Uyo, Nigeria
  • Ukpong Udofia Department of Human Ecology, Nutrition and Dietetics, University of Uyo, Uyo, Nigeria
  • Ayobami Oladejo Department of Agricultural and Food Engineering, University of Uyo, Uyo, Nigeria
  • Mfoniso E. Udoh Department of Human Ecology, Nutrition and Dietetics, University of Uyo, Uyo, Nigeria
  • Mfrekemfon G. Akpan Department of Agricultural and Food Engineering, University of Uyo, Uyo, Nigeria

Keywords:

Hibiscus, Thermal processing, Microbial property

Abstract

Comparative analysis of the microbial properties of Hibiscus sabdariffa calyces and leaves (Red variety) was subjected to different thermal drying methods: electric oven, infrared oven, and sun drying was conducted using standard analytical and molecular techniques. The study revealed significant differences (p<0.05) in microbial loads, with sun drying exhibiting the lowest heterotrophic bacterial load at 3.56 ± 0.13 log10 CFU/g, compared to the electric oven and infrared drying methods, which recorded bacterial loads of 3.82 ± 0.35 and 3.85 ± 0.14 log10 CFU/g, respectively. Similarly, sun drying yielded a fungal count of 3.60 ± 0.43 log10 CFU/g, indicative of a differential impact of drying methods on fungal contamination levels. Oven drying of leaf samples uniquely identified Vibrio at 2.00 ± 0.1 log10 CFU/g, highlighting a potential safety concern associated with this method. Through sequencing analysis, a diverse microbial spectrum was identified, including Proteus vulgaris strain SI-9, Acinetobacter baumannii strain ZHOU, Providencia rettgeri strain AR_0082, and Pseudomonas aeruginosa strain DBH3, among others. These findings underscore the necessity of selecting appropriate drying methods to mitigate microbial risks effectively. Phylogenetic analysis delineated the genetic relationships among the isolates, reflecting their potential ecological origins and emphasizing the influence of anthropogenic activities on microbial diversity in processed food products. The comparative assessment of drying methods in this study advocates for enhanced processing protocols to ensure the microbial safety of Hibiscus sabdariffa, aligning with global food safety standards and promoting consumer trust in the quality of dried botanicals.

 

Dimensions

P. J. Tsai, J. McIntosh, P. Pearce, B. Camden & B. R. Jordan, ‘‘Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract", Food Research International 35 (2002) 351. https://www.infona.pl/resource/bwmeta1.element.elsevier-154b7284-9e72-330c-b3d6-6929a1ffe9e7.

T. Chewonarin, T. Kinouchi, K. Kataoka, H. Arimochi, T. Kuwahara, I. Init & Y. Ohnishi, ‘‘Effects of roselle (Hibiscus sabdariffa Linn), a Thai medicinal plant, on the mutagenicity of various known mutagens in Salmonella typhimurium and on formation of aberrant crypt foci induced by the colon carcinogens azoxymethane and 2-amino-methyl-6-phenylimidazo (4,5-b) pyridine in F344 rats", Food and Chemical Toxicology 37 (1999) 591. https://www.sciencedirect.com/science/article/pii/S0278691599000411.

M. H. Faraji & A. Haji Tarkhani, ‘‘The effect of sour tea (Hibiscus sabdariffa) on essential hypertension", Journal of Ethnopharmacology 65 (1999) 231. https://www.sciencedirect.com/science/article/abs/pii/S0378874198001573.

P. Kotzekidou, "Food hygiene and toxicology in ready to eat foods", Academic Press, 2016. https://www.sciencedirect.com/book/9780128019160/food-hygiene-and-toxicology-in-ready-to-eat-foods.

O. O. Alegbeleye & A. S. Sant’Ana, ‘‘Risks associated with the consumption of irrigation water contaminated produce: On the role of quantitative microbial risk assessment", Current Opinion in Food Science 41 (2021) 88. https://www.sciencedirect.com/science/article/abs/pii/S221479932100062X.

L. K. Strawn, Y. T. Grohn, S. Warchocki, R. W. Worobo, E. A. Bihn, & M. Weidmann, ‘‘Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields", Applied and Environmental Microbiology 79 (2013) 7618. https://journals.asm.org/doi/abs/10.1128/aem.02831-13.

J. Mei Soon, L. Manning, W. Paul Davies & R. Baines, ‘‘Fresh produce associated outbreaks: a call for HACCP on farms?", British Food Journal 114 (2012) 553. https://www.emerald.com/insight/content/doi/10.1108/00070701211219568/full/html?journalCode=bfj.

M. B. Cooley, D. Chao, & R. E. Mandrell, ‘‘Escherichia coli O157 survival and growth on lettuces is altered by the presence of epiphytic bacteria", Journal of Food Protection 69 (2006) 2329. https://www.sciencedirect.com/science/article/pii/S0362028X22075974.

M. Uyttendaele, L. A. Jaykus, P. Amoah, A. Chiodini, D. Cunliffe, L. Jacxsens, K. Holvoet, L. Korsten, M. Lau, P. McClure & G. Medema, ‘‘Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production", Comprehensive Reviews in Food Science and Food Safety 14 (2015) 336. https://doi.org/10.1111/1541-4337.12133.

M. Barth, T. R. Hankinson, H. Zhuang & F. Breidt, ‘‘Microbiological spoilage of fruits and vegetables", Compendium of the microbiological spoilage of foods and beverages (2009) 135. https://doi.org/10.1007/978-1-4419-0826-1_6.

I. Castro-Ibáñez, M. I. Gil, J. A. Tudela, R. Ivanek, & A. Allende, ‘‘Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain", Food Microbiology 49 (2015) 173. https://doi.org/10.1016/j.fm.2015.02.004.

B. C. Adebayo-Tayo & U. A. Samuel, ‘‘Microbial quality and proximate composition of dried Hibiscus sabdariffa calyxes in Uyo, Eastern Nige ria", Malaysian Journal of Microbiology 5 (2009) 12. http://dx.doi.org/10.21161/mjm.12608.

M. Cheesbrough, ‘‘District Laboratory Practice in Tropical Countries, Part 2 (2nd ed.)", Cambridge University Press, IJMS, 2006, pp. 65–68. https://www.cambridge.org/core/books/district-laboratory-practice-in-tropical-countries/6F6FE267756B004A4826209C692BD5B3.

K. Tamura & M. Nei, ‘‘Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees", Molecular Biology and Evolution 10 (1993) 512. https://doi.org/10.1093/oxfordjournals.molbev.a040023.

R. Khiari, H. Zemni & D. Mihoubi, ‘‘Raisin processing: Physicochemical, nutritional and microbiological quality characteristics as affected by drying process", Food Reviews International 35 (2019) 246. https://doi.org/10.1080/87559129.2018.1517264.

F. M. Allai, Z. A. A. Azad, N. A. Mir & K. Gul, ‘‘Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety", Applied Food Research 3 (2023) 100258. https://doi.org/10.1016/j.afres.2022.100258.

M. M. Hasan, M. R. Islam, A. R. Haque, M. R. Kabir, K. J. Khushe & S. K. Hasan, ‘‘Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review", Bioresources and Bioprocessing 11 (2024) 10. https://doi.org/10.1186/s40643-023-00722-8.

J. W. Buck, R. R. Walcott & L. R. Beuchat, ‘‘Recent trends in microbiological safety of fruits and vegetables", Plant Management Network 4 (2003) 25. https://doi.org/10.1094/PHP-2003-0121-01-RV.

A. S. Sant’Ana, M. S. Barbosa, M. T. Destro, M. Landgraf & B. D. Franco, ‘‘Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelflife", International Journal of Food Microbiology 157 (2012) 52. https://doi.org/10.1016/j.ijfoodmicro.2012.04.011.

D. Aruscavage, S. A. Miller, M. L. Ivey, K. Lee & J. T. LeJeune, ‘‘Survival and dissemination of Escherichia coli O157 on physically and biologically damaged lettuce plants", Journal of Food Protection 71 (2008) 2384. https://doi.org/10.4315/0362-028X-71.12.2384.

O. Nwaiwu, C. C. Aduba, V. C. Igbokwe, C. E. Sam & M. U. Ukwuru, ‘‘Traditional and artisanal beverages in Nigeria: Microbial diversity and safety issues", Beverages 6 (2020) 53. https://doi.org/10.3390/beverages6030053.

V. Vrbovská, I. Sedláček, M. Zeman, P. Švec, V. Kovařovic, O. Šedo, M. Laichmanová, J. Doškař & R. Pantůček, ‘‘Characterization of Staphylo coccus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini", Microorganisms 8 (2020) 204. https://doi.org/10.3390/microorganisms8020204.

B. Gawrońska, M. Marszałek, P. Kosiński, M. Podsiedlik, L. Bednorz & J. Zeyland, ‘‘No wonder, it is a hybrid. Natural hybridization between Jacobaea vulgaris and J. erucifolia revealed by molecular marker systems and its potential ecological impact", Ecology and Evolution 13 (2023) e10467. https://doi.org/10.1002/ece3.10467.

S. K. Sharma, A. Ramesh, M. P. Sharma, O. P. Joshi, B. Govaerts, K. L. Steenwerth & D. L. Karlen, ‘‘Microbial community structure and diversity as indicators for evaluating soil quality", Sustainable Agriculture 5 (2011) 317. https://link.springer.com/chapter/10.1007/978-90-481-9513-8_11.

P. Trivedi, C. Mattupalli, K. Eversole & J. E. Leach, ‘‘Enabling sustainable agriculture through understanding and enhancement of microbiomes", New Phytologist 230 (2021) 2129. https://doi.org/10.1111/nph.17319.

Dendogram showing the relatedness of the bacterial isolates using the Neighbor-Joining method.

Published

2024-08-10

How to Cite

Microbial properties of Hibiscus sabdariffa processed through different thermal methods. (2024). Recent Advances in Natural Sciences, 2(2), 78. https://doi.org/10.61298/rans.2024.2.2.78

How to Cite

Microbial properties of Hibiscus sabdariffa processed through different thermal methods. (2024). Recent Advances in Natural Sciences, 2(2), 78. https://doi.org/10.61298/rans.2024.2.2.78