Hybrid block formulae whose eigenvalues of Jacobian matrices are close to the imaginary axis of the complex plane

Authors

  • J. E. Kona Department of Mathematics and Statistics, University of Delta, Agbor, Delta State
  • K. O. Muka Department of Mathematics, University of Benin, Benin City, Edo State

Keywords:

A-stable, Stiff initial value problem, Complex plain, Hybrid block method

Abstract

Methods for integrating stiff initial value problems are required to be A-stable. Of great interest are A-stable methods whose Jacobian matrices have their eigenvalues close to the imaginary axis of the complex plane. This class of A-stable methods are very rare. This paper is on the development of a new family of A-stable hybrid block method whose Jacobian matrices possess eigenvalues on the imaginary of the complex plane via interpolation and collocation techniques. The family of methods developed herein are A-stable for order p ≤ 18. Numerical solutions generated by the new method are compared with existing methods in the literature. The numerical results show that the new class of methods are more efficient and accurate.

Dimensions

L. Brugnano & D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Breach Science Publishers, Amsterdam, 1998. https://openlibrary.org/books/OL116296M.

L. Yuanyuan & M. Fanwei, “Stability analysis of a class of higher order difference equations”, Abstract and Applied Analysis 2014 (2014) 434621. https://doi.org/10.1155/2014/434621.

J. R. Cash, “On the integration of stiff systems of ODEs using extended backward differentiation formulae”, Numer. Math. 34 (1980) 235. https://doi.org/10.1007/BF01396701.

G. Hojjatti, M. Y. Rahimi & S. M. Hosseini, “New second derivative multistep methods for stiff system”, Applied Mathematical Modelling 30 (2006) 466. https://sci-hub.se/10.1016/j.apm.2005.06.007.

K. O. Muka & M. N. O. Ikhile, “Second derivative parallel block backward differentiation type formulas for stiff ODEs”, Journ. Nig. Assc. of Maths. Physics 14 (2009) 117. https://www.ajol.info/index.php/jonamp/article/view/83041.

G. Dahlquist, “Stability and error and bounds in the numerical integration of ordinary differential equations”, Mathematics of computation 17 (1963) 74. https://link.springer.com/article/10.1007/s10543-006-0072-1.

C. W. Gear, Numerical initial value problems in ordinary differential equations, Automatic Computation, First Edition, 1971, https://openlibrary.org/books/OL5221584M.

Y. F. Rahim & M. E. H. Hafidzuddi, “Three points block embedded diagonally implicit Runge-Kutta Method for solving ODEs”, Advances in Mathematics: Scientific Journal 10 (2021) 3449. https://doi.org/10.37418/amsj.10.11.6.

M. S. Abdu & A. Muhammad, “A robust diagonally implicit block method for solving first order stiff IVP of ODEs”, Applied Mathematics and Computational Intelligence 11 (2022) 252. https://www.researchgate.net/publication/365994189.

A. Muhammad , G. I. Danbaba & S. Bashir, “A new block of higher order hybrid super class backward differentiation formula for simulating stiff IVP or ODEs”, Journal of Research in Applied Mathematics 8 (2022) 50. https://www.questjournals.org/jram/papers/v8-i12/08125060.pdf.

J. C. Butcher, “A modified multistep method for the numerical integration of ordinary differential equation”, J. ACM 12 (1965) 124. https://www.deepdyve.com/lp/association-for-computing-machinery/a-modified-multistep-method-for-the-numerical-integration-of-ordinary-Nmu6g225s5.

C. W. Gear, “Hybrid methods for initial value problems in ordinary differential equations”, J. Scie. Appl. Math. Sec B. Numeri Anal 2 (1965) 69. https://openlibrary.org/books/OL25511335M.

A. Shokri, “The Symmetric p-stable hybrid obrechkoff methods for the numerical solution of second order initial value problem”, TWMS. J. Pure Math 5 (2014) 28. https://www.twmsj.az/Abstract.aspx?Id=116.

A. Bello, G. I. Danbaba & U Garba, “Convergence test for the extended 3 - point super class of block backward differentiation formula for integrating stiff IVP”, FUDMA Journal of Sciences 7 (2023) 103. https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1906.

L. Brugnano & Magherini, “Blended implementation of block implicit methods for ODEs”, Appl, numer. Math. 42 (2002) 29. https://www.sciencedirect.com/science/article/abs/pii/S0168927401001404.

H. Ramos & G. Sigh, “A tenth order A-stable two step Hybrid block method for solving initial value problem”, Applied Mathematics and Computation 310 (2017) 75. https://www.iosrjournals.org/iosr-jm/papers/Vol12-issue5/Version-2/C1205022027.pdf.

R. I. Okuonghae & M. N. O. Ikhile, “L(α)-stable variable-order implicit second derivative Runge-Kutta methods”, J Numer Analysis and Applications 7 (2014) 314. https://doi.org/10.1134/S1995423914040065.

M. A. Rufai , M. K. Duromola & A. A. Ganiyu, “Derivation of one-sixth hybrid block method for solving general first order ordinary differential equations”, IOSR Journal of Mathematics 12 (2016) 20. https://www.iosrjournals.org/iosr-jm/papers/Vol12-issue5/Version-2/C1205022027.pdf.

Y. A. Yahaya & A. A. Tijjani, Formulation of corrector methods from 3-step hybrid adams type methods for the solution of first order ordinary differential equation, Proceedings of 32nd The IIER International Conference, Dubai, UAE, 2015, pp.102-107. https://www.worldresearchlibrary.org/up_proc/pdf/52-1440233442102-107.pdf.

M. S. Abdu & A. Muhammad, “A robust diagonally implicit block method for solving first order stiff IVP of ODEs”, Applied Mathematics and Computational Intelligence 11 (2022) 252. https://www.researchgate.net/publication/365994189_A_Robust_Diagonally_Implicit_Block_Method_for_Solving_First_Order_Stiff_IVP_of_ODEs.

A. Muhammad, G. I. Danbaba & S. Bashir, “A new block of higher order hybrid super class BDF for simulating stiff IVP of ODEs”, Journal of Research in Applied Mathematics 8 (2022) 50. https://www.questjournals.org/jram/papers/v8-i12/08125060.pdf.

M. B. Suleiman, H. Musa, F. Ismail & N. Senu (2013), “A new variable step size block backward differentiation formula for solving stiff initial value problems”, International Journal of Computer Mathematics 90 (2013) 2391. https://dl.acm.org/doi/10.1080/00207160.2013.776677.

J. Sunday , M. R. Odekunle, A. A. James & A. O. Adesanya, “Numerical solution of stiff and oscillatory differential equations using a block integrator”, British J. of Mathematics and Computer Science 4 (2014) 2471. http://go7publish.com/id/eprint/2530/1/Sunday4172013BJMCS8563.pdf.

A. U. Fotta & T. J. Alabi, “Block method with one hybrid point for the solution of first order initial value problems of ordinary differential equations”, Int J Pure Appl Math. 103 (2015) 11. https://www.academia.edu/67850394.

Published

2024-09-02

How to Cite

Hybrid block formulae whose eigenvalues of Jacobian matrices are close to the imaginary axis of the complex plane. (2024). Recent Advances in Natural Sciences, 2(2), 74. https://doi.org/10.61298/rans.2024.2.2.74

How to Cite

Hybrid block formulae whose eigenvalues of Jacobian matrices are close to the imaginary axis of the complex plane. (2024). Recent Advances in Natural Sciences, 2(2), 74. https://doi.org/10.61298/rans.2024.2.2.74