Antibiosis and GC-MS of secondary metabolites of rhizosphere bacteria from Manatee foodplants in the humic freshwater ecosystem of Eniong river, Nigeria

Authors

Abstract

Microorganisms are able to synthesize secondary metabolites of various structures and bioactivities. These metabolites are produced to help the organism compete successfully with other organisms in their natural habitat and adapt with changing environmental milieu. The ability of rhizosphere bacteria (Bacillus subtilis NC_000964.3 and Pseu-domonas aeruginosa NC_002516.2) isolated from the rhizospheric soil of Manatee food plants Mimosa pygra, Ipomeoa aquatica and Pistia stratoites to inhibit the growth of human pathogens (P. aeruginosa, E. coli, S. aureus and B. subtilis) was evaluated using standard methods. It was observed that the growth extracts of B. subtilis strains M5, M8 and P7 and P. aeruginosa strains I3 and M9 contained useful bioactive compound. GC-MS analysis of the cell -free methanol extract of the antibiotic producing bacterial strains was also evaluated and the results showed that their inhibitory potentials against bacterial pathogens are due to the presence of phenylethyl alcohol, 2-ethyl-4-methyl-1,3-dioxolane, bicyclo [4.2.0] octa-1,3,5-triene and 4-amino-2-methyl-5,6-dimethyl pyrimidine for B. subtilis and 3,4-dimethyl tetrahydrofuran, 4,6-dimethyl-4-hydroxy-5- heptenoic acid and 2,4-dimethyl-4-heptanol for Pseudomonas aeruginosa. These strains of rhizosphere bacteria may be exploited to produce new antibiotics.

Dimensions

D. V. Mavrodi, W. Blankenfeldt & L. S. Thomashow, ‘‘Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation", Annu. Rev. Phytopathol 44 (2006) 417. https://doi.org/10.1146/annurev.phyto.44.013106.145710.

B. M. Wiseman, S. M. Neate, K. O. Keller & S. E. Smith, ‘‘Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its bio logical nature", Soil Biol Biochem 28 (1996) 727. https://doi.org/10.1016/0038-0717(95)00178-6.

J. J. Scott, ‘‘Bacterial protection of beetle-fungus mutualism", Science 322 (2008) 63. https://pubmed.ncbi.nlm.nih.gov/18832638/.

G. R. Daily, ‘‘Nature’s services: societal dependence on natural ecosystems", Environmental Values 7 (1998) 365. https://philpapers.org/rec/DAINSS-2.

P. A. Del Giorgio & J. J. Cole, ‘‘Bacterial energetics and growth efficiency", in Microbial ecology of the oceans, Wiley-Liss, 2000, pp.289–325. https://www.researchgate.net/publication/262403297_Bacterial_energetics_and_growth_efficiency.

J. Li, G. Ren, Z. Jia & Y. Dong, ‘‘Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes", Plant Soil 380 (2014) 337. https://doi.org/10.1007/s11104014-2097-6.

P. G. Dennis, A. J. Miller & P. R. Hirsch, ‘‘Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?" FEMS Microbiology Ecology 72 (2010) 313. https://doi.org/10.1111/j.1574-6941.2010.00860.x.

M. Koranda, J. Schnecker, C. Kaiser, L. Fuchsluger, B. Kitzler, C. F. Stange, A. Sessitsch, S. Zechmeister-Boltenstern & A. Richter, ‘‘Microbial processes and community composition in the rhizosphere of European beech - The influence of plant C exudates", Soil Biology and Biochemistry 43 (2011) 551. https://doi.org/10.1016/j.soilbio.2010.11.022.

E. Somers, J. Vanderleyden & M. Srinivasan, ‘‘Rhizosphere bacterial sig nalling: A love parade beneath our feet", Critical Review of Microbiology 30 (2004) 205. https://doi.org/10.1080/10408410490468786.

X. Pan, J. M. Raaijmakers & V. J. Carrión, ‘‘Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning", Trends in Microbiology 31 (2023) 842. https://doi.org/10.1016/j.tim.2023.03.018.

Y. Lu, H. J. Kronzucker, M. Yu, S. Shabala & W. Shi, ‘‘Nitrogen-loss and carbon-footprint reduction by plant-rhizosphere exudates", Trends in Plant Science 59 (2023) 959. https://doi.org/10.1016/j.tplants.2023.09.007.

A. Kumar & A. Dubey, ‘‘Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production", Journal of Advanced Research 24 (2020) 337. https://doi.org/10.1016/j.jare.2020.04.014.

V. Mathur & D. Ulanova, ‘‘Microbial metabolites beneficial to plant hosts across ecosystems", Microbial Ecology 86 (2023) 25. https://doi.org/10.1007/s00248-022-02073-x.

H. Etesami & B. R. Glick, ‘‘Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience", Microbiological Research 281 (2024) 127602. https://doi.org/10.1016/j.micres.2024.127602.

Q. Saeed, W. Xiukang, F. U. Haider, J. Kučerik, M. Z. Mumtaz, J. Holatko & A. Mustafa, ‘‘Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms", International Journal of Molecular Sciences 22 (2021) 105. https://doi.org/10.3390/ijms221910529.

J. M. Raaijmakers, M. Vlami & J. T. de Souza, ‘‘Antibiotic production by bacterial biocontrol agents", Antonie Van Leeuwenhoek 81 (2002) 537. https://doi.org/10.1023/A:1020501420831.

D. M. Weller, B. B. Landa, O. V. Mavrodi, K. L. Schroeder, L. E. De La Fuente, S. B. Bankhead, R. A. Molar, R. F. Bonsall, D. V. Mavrodi & L. S.Thomashow, ‘‘Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots", Plant Biol. 9 (2007) 4. https://pubmed.ncbi.nlm.nih.gov/17058178/.

D. V. Mavrodi, O. V. Mavrodi, J. A. Parejko, R. F. Bonsall, Y. S. Kwak, T. C. Paulitz, L. S. Thomashow & D. M. Weller, ‘‘Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals", Appl Environ Microbiol 78 (2012) 804. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264129/.

C. R. Currie, M. Poulsen, J. Mendenhall, J. J. Boomsma & J. Billen, ‘‘Co evolved crypts and exocrine glands support mutualistic bacteria in fungus growing ants", Science 311 (2006) 81. https://pubmed.ncbi.nlm.nih.gov/16400148/.

J. D. Palumbo, T. L. O’keeffe & H. K. Abbas, ‘‘Isolation of Maize Soil and Rhizosphere Bacteria with Antagonistic Activity against Aspergillus flavus and Fusarium verticillioides", Journal of Food Protection 70 (2007) 1615. https://pubmed.ncbi.nlm.nih.gov/16400148/.

S. Mezaache-Aichour, A. Guechi, J. Nicklin, D. Drider, H. Prevost & R. N. Strange, ‘‘Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere of potatoes growing in Algeria", Journal of Plant Pathology 94 (2012) 89. https://hal.inrae.fr/view/index/identifiant/hal-02645667.

D. Gislin, D. Sudarsanam, G. A. Raj & K. Baskar, ‘‘Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification", Journal of Genetic Engineering and Biotechnology 16 (2018) 287. https://doi.org/10.1016/j.jgeb.2018.05.010.

N. M. Nair, R. Kanthasamy, R. Mahesh, S. I. K. Selvam & S. Ramalak shmi, ‘‘Identification of antibacterial compound from Bacillus horikoshii,isolated from Rhizosphere region of Alfalfa plant", Journal of Applied Sciences 19 (2019) 140. https://ui.adsabs.harvard.edu/link_gateway/2019JApSc..19..140M/doi:10.3923/jas.2019.140.147

J. O. Falkinham, T. E. Wall, J. R. Tanner, K. Tawaha, F. Q. Alali, C. Li & N. H. Oberlies, ‘‘Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red soils", Applied and Environmental Microbiology 75 (2009) 2735. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681674/.

S. A. Hassan, E. Hanif & R. R. Zohra, ‘‘Isolation and screening of soil bacteria for potential antimicrobial activity", FUUAST Journal of Biology 4 (2014) 217. https://fuuastjb.org/index.php/fuuastjb/article/view/172.

R. E. Ley, M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. Bircher, M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, R. Knight & J. I. Gordon, ‘‘Evolution of Mammals and their Gut Microbes", Science 320 (2008) 1647. https://pubmed.ncbi.nlm.nih.gov/18497261/.

J. L. Martinez, ‘‘Antibiotics and antibiotic resistance genes in natural environments", Science 321 (2008) 365. https://pubmed.ncbi.nlm.nih.gov/18635792/.

R. F. Bonsall, L. S. Thomashow, D. V. Mavrodi & D. M. Weller, ‘‘Extraction and detection of antibiotics in the rhizosphere metabolome", Curr. Trends Mass Spectrom. (Suppl. Spectrosc.) 11 (2007) 14. https://www.spectroscopyonline.com/view/extraction-and-detection-antibiotics-rhizosphere-metabolome.

J. M. Willey, L. M. Sherwood & C. J. Woolverton, Prescott Harley and Kleins Microbiology, (7th Ed). Mc-Graw Hill, New York, 2008, pp. 1049–1088. https://search.worldcat.org/title/Prescott-Harley-and-Klein’s-microbiology/oclc/71044581.

C. I. Uzoigwe & O. K. Agwa, ‘‘Microbiological quality of water collected from boreholes sited near refuse dumpsites in Port Harcourt, Nigeria", African Journal of Biotechnology 11 (2012) 3135. https://www.ajol.info/index.php/ajb/article/view/100707.

T. Maniatis, E. T. Fritsch & J. Sambrook, Molecular Cloning", a laboratory manual, Cold Spring Harbor: New York, 1989, pp. 945– 982. https://onlinelibrary.wiley.com/doi/abs/10.1016/0307-4412%2883%2990068-7.

R. Kraft, J. Tardiff, K. S. Krauter & L. A. Leinwand, ‘‘Using mini-prep plasmid DNA for sequencing double stranded template with sequences", Bio. Technique 6 (1988) 544. https://pubmed.ncbi.nlm.nih.gov/3273187/.

D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity, Bergey’s manual of systematic bacteriology, 2nd Edition Part B, Springer’s, USA, 2005, pp. 27–32. https://link.springer.com/book/10.1007/0-387-28021-9.

M. Cheesbrough, District laboratory practices in tropical countries Second edition, Cambridge University Press, 2006, pp. 13–23. https://www.cambridge.org/core/books/district-laboratory-practice-in-tropical-countries/777AAC879D604058E7EA3F4E15824F88.

S. A. Miller, D. D. Dykes & H. F. Polesky, ‘‘A simple salting out procedure for extracting DNA from human nucleated cells", Nucleic Acids Res. 16 (1988) 1215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC334765/.

B. Tuleva, N. Christova, R. Cohen, D. Antonova, T. Todrov & I. Stoineva, ‘‘Isolation and characterization of trehalose-tetraester biosurfactants from a soil strain Micrococcus luteus", Process Biochemistry 44 (2009) 135. https://doi.org/10.1016/j.procbio.2008.09.016.

L. Elleuch, M. Shaaban & S. Smaoui, ‘‘Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262", Appl. Biochem. Biotechnol 162 (2010) 579. https://doi.org/10.1007/s12010-009-8808-4.

M. Kanagasabhapathy, H. Sasaki & S. Nagata, ‘‘Phylogenetic identification of epibiotic bacteria possessing antimicrobial activities isolated from red algal species of Japan", World Journal of Microbiology and Biotechnology 24 (2008) 2315. https://doi.org/10.1007/s11274-008-9746-y.

P. Devi, S. Wahidullah, C. Rodrigues & L. D. Souza, ‘‘The sponge associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds", Marine Drugs 8 (2010) 1203. https://doi.org/10.3390/md8041203.

A. P. Graca, J. Bondoso, H. Gasper, J. R. Xavier, M. C. Monteiro, M. de la Cruz, D. Oves-Costales, F. Vincente & O. M. Lagge, ‘‘Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae)", PLOS ONE 8 (2013) 1. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078992.

J. Ramakrishnan, M. Shunmugasundaram & M. Narayanan, ‘‘Streptomyces sp. SCBT isolated from rhizosphere soil of medicinal plants is antagonistic to pathogenic bacteria", Iran Journal of Biotechnology 7 (2009) 75. https://www.cabidigitallibrary.org/doi/full/10.5555/20093232987.

M. F. Adegboye & O. O. Babalola, ‘‘Isolation and identification of potential antibiotic producing rare actinomycetes from rhizospheric soils", Journal of Human Ecology 56 (2016) 31. https://doi.org/10.1080/09709274.2016.11907035

J. J. Lucchini, J. Corre & A. Cremieux, ‘‘Antibacterial activity of phenolic compounds and aromatic alcohols", Research in Microbiology 141 (1990) 499. https://www.sciencedirect.com/science/article/pii/0923250890900752.

I. Kubo, H. Muroi, H. Himejima & A. Kubo, ‘‘Antibacterial activity of long chain alcohols: the role of hydrophobic alkyl groups", Bioorg. Med. Chem. Lett. 3 (1993) 1305. https://doi.org/10.1016/S0960-894X(00)80336-4.

G. Bisignano, M. G. Lagana, D. Trombetta, S. Arena, A. Nostro, N. Uccella, G. Mazzanti & A. Saija, ‘‘In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L", FEMS Microbiology Letters 198 (2001) 9. https://doi.org/10.1111/j.1574-6968.2001.tb10611.x.

Y. Kim, S. Farrah & R. Baney, ‘‘Silanol—A novel Class of Antimicrobial Agent," Electron J Biotech. 9 (2006) 0. https://www.scielo.cl/scielo.php?pid=S0717-34582006000200012&script=sci_arttext&tlng=en

J. Eswaran, E. Koronakis, M. K. Higgins, C. Hughes & V. Koronakis, ‘‘Three’s company: component structures bring a closer view of tripartite drug efflux pumps", Curr Opin Struct Biol 14 (2004) 741. https://www.sciencedirect.com/science/article/abs/pii/S0959440X04001794.

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt & M. Tignor, ‘‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge, UK: Cambridge University Press (2007). https://wedocs.unep.org/handle/20.500.11822/30763;jsessionid=701380F0A26B27E3D4AB318AE8C63D77.

P. Alam, S. I. Alqasoumi, F. Shakeel & M. S. Abdel-Kader, ‘‘HPTLC densitometric analysis of arbutin in bulk drug and methanolic extracts of Arctostaphylos uva-ursi", Natural Product Research 25 (2011) 1671. https://www.tandfonline.com/doi/abs/10.1080/14786419.2010.529447.

W. Chen, Y. Liu, H. S. Courtney, M. Bettenga, C. M. Agrawal, J. D. Bumgardner et al., ‘‘In vitro anti-bacterial and biological properties of magnetron co-sputtered silver containing hydroxyapatite coating", Biomaterials 27 (2006) 5512. https://www.sciencedirect.com/science/article/abs/pii/S014296120600593X. [51] S. Sharma & M. Kaur, ‘‘Antimicrobial activities of rhizobacterial strains of Pseudomonas and Bacillus strains isolated from rhizosphere soil of Carnation (Dianthus caryophyllus Cv. Sunrise)", Indian Journal of Microbiology 30 (2010) 229. https://doi.org/10.1007/s12088-010-0045-6.

A. S. Motta, F. Cladera-Olivera & A. Brandelli, ‘‘Screening for antimicrobial activity among bacteria isolated from the Amazon basin", Brazilian Journal of Microbiology 35 (2004) 307. https://doi.org/10.1590/S1517-83822004000300007.

S. Iqbal & M. Qasim, F. B. Rahman, H. and I. Sajid, ‘‘Screening, Characterization and Optimization of antibacterial peptides, produced by Bacillus safensis strain MK-12 isolated from waste dump soil KP, Pakistan", bioRxiv, 2018, 308205. https://www.biorxiv.org/content/10.1101/308205v1.

K. M. O’Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. Salmond & D. R. Spring, ‘‘Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials", Angewandte Chemie International Edition 52 (2013) 10706. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201209979.

L. Zhang & C. Sun, ‘‘Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation", Applied and Environmental Microbiology 84 (2018) e00445. https://pubmed.ncbi.nlm.nih.gov/29980550/.

B. Baral & M. R. Mozafari, ‘‘Strategic moves of ‘superbugs’ against available chemical scaffolds: signaling, regulation, and challenges", ACS Pharmacology & Translational Science 3 (2020) 373. https://pubs.acs.org/doi/abs/10.1021/acsptsci.0c00005.

A. Traven & T. Naderer, ‘‘Central metabolic interactions of immune cells and microbes: prospects for defeating infections", EMBO reports 20 (2019) e47995. https://www.embopress.org/doi/full/10.15252/embr.201947995.

Z. Breijyeh & R. Karaman, ‘‘Design and synthesis of novel antimicrobialagents", Antibiotics 12 (2023) 628. https://www.mdpi.com/2079-6382/12/3/628.

. A = Mimosa pygra; B = Ipomeoa aquatica; C = Pistia stratoites

Published

2024-06-12

How to Cite

Antibiosis and GC-MS of secondary metabolites of rhizosphere bacteria from Manatee foodplants in the humic freshwater ecosystem of Eniong river, Nigeria. (2024). Recent Advances in Natural Sciences, 2(1), 68. https://doi.org/10.61298/rans.2024.2.1.68

Issue

Section

Articles

How to Cite

Antibiosis and GC-MS of secondary metabolites of rhizosphere bacteria from Manatee foodplants in the humic freshwater ecosystem of Eniong river, Nigeria. (2024). Recent Advances in Natural Sciences, 2(1), 68. https://doi.org/10.61298/rans.2024.2.1.68