Geothermal parameter assessment in the Southwestern Sokoto Basin, Nigeria, using spectral analysis (centroid method)

Authors

  • U. Z. Magawata Physics and Material Science Department, Kwara State University, Malete, Nigeria
  • N. K Olasunkanmi Physics Department Kebbi State University of Science and Technology, Aliero, Nigeria
  • T. A ISSA Department of Geology and Mineral Science, Kwara State University, Malete, Nigeria

Keywords:

Geothermal parameters, Spectral analysis, Heat flow, Sokoto basin

Abstract

This study utilized spectral analysis (centroid method) to assess geothermal parameters in the southwestern part of the Sokoto Basin, Nigeria. The high-resolution airborne data comprised forty-nine (49) overlapping blocks, and each block was divided into 55x55 km to evaluate essential parameters such as depth to the top boundary (Zt ), centroid
depth (Zo), and magnetic source bottom (Zb = 2Zo-Zt ). The analysis revealed variable Curie points depths (CPD), ranging from 3.89 km to 26.56 km. The lowest CPD is primarily associated with basement rocks within anomalies A, B, C, D, E, F, G, H, and I, with an average CPD of 9.16 km. Furthermore, the thermal gradients ranged from 21.84 C/km to 149.10 C/km, with an average thermal gradient of 73.30 C/km. The heat flow exhibited variations between 54.81 mW/m² and 374.24 mW/m², with average heat flow of 180.4 mW/m², indicating significant geothermal potential zones. The high thermal gradients and heat flow regions were identified, around anomalies A, B, and C. Additionally, temperature gradients identified at shallow depths ranged from 110 C/km to 150 C/km. The results reveal the presence of high-temperature points and anomalous geothermal potentials, particularly within anomalies A, B, and C, thus requiring further for sustainable geothermal energy generation in the study area.

Dimensions

A.R. Bansal, G. Gabriel, V.P. Dimri & C.M. Krawczyk, ‘‘Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany", Geophysics 76 (2011) L11. https://doi.org/10.1190/1.3560017.

A.Y. Tanaka, Y. Okubo & O. Matsubayashi, ‘‘Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia", Tectono physics 306 (1999) 461. https://api.semanticscholar.org/CorpusID:129434570.

J. B. Wright, D. Hastings, W. B. Jones & H. R. Williams, Geology and mineralresources of West Africa, George Allen and Urwin, London, 1985, pp. 90 – 120. https://doi.org/10.1007/978-94-015-3932-6.

D. Ravat, A. Pignatelli, I. Nicolosi & M. Chiappini, ‘‘A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data", Geophysics J. Int. 169 (2007) 421. https://doi.org/10.1111/j.1365-246X.2007.03305.x.

W. R. Roest, V. Verhoef & M. Pilkington, ‘‘Magnetic interpretation using the 3-D analytic signal", Geophysics 57 (1992) 116. https://doi.org/10.1190/1.1443174.

S. Maus, D. Gordon & J. D. Fairhead, ‘‘Curie temperature depth estimation using a self similar magnetization model", Geophysical Journal International 129 (1997) 163. https://doi.org/10.1111/j.1365-246X.1997.tb00945.x.

H. E.Ross, R. J. Blakely & M. D. Zoback, ‘‘Testing the use of aeromagnetic data for the determination of Curie depth in California", Geophysics 71 (2006) L51. https://doi.org/10.1190/1.2335572.

G. Gabriel, I. Dressel, D. Vogel & C. M. Krawczyk, ‘‘Depths to the bottom of magnetic sources and geothermal prospectivity in Southern Germany", First Break 30 (2012) 39. http://dx.doi.org/10.3997/1365-2397.2012001.

S. Saleh, M. Salk & O. Pamukcu, ‘‘Estimating Curie point depth and heat flow map for Northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data", Pure and Applied Geophysics 170 (2013) 85. http://dx.doi.org/10.1007/s00024-012-0461-0.

A. R. Bansal, S. P. Anand, M. Rajaram, V. K. Rao & V. P. Dimri, ‘‘Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources", Tectono physics 603 (2013) 155. https://doi.org/10.1016/j.tecto.2013.05.024.

S.N.P. Guimarães, V. M. Hamza & D. Ravat, Curie depths using combined analysis of centroid and matched filtering methods in inferring thermomagnetic characteristics of Central Brazil, 13th International Congress of the Brazilian Geophysical Society, Riode Janeiro, Brazil, 2013, pp. 26–29. https://doi.org/10.1190/sbgf2013-381.

G. E. Obande & K. M. Lawal, L. A. Ahmed, ‘‘Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm spring north-east Nigeria", Geothermic 50 (2014) 85. https://doi.org/10.1016/j.geothermics.2013.08.002.

L. I. Nwankwo, ‘‘Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of upper Sokoto Basin, Nigeria", Geothermics 54 (2015) 76. http://dx.doi.org/10.1016/j.geothermics.2014.12.00.

R. Bello, C. Ofoha & N. Wehiuzo, ‘‘Geothermal gradient, Curie point depth and heat flow determination of some parts of lower Benue trough and Anambra basin, Nigeria, using high resolution aeromagnetic data", Phys. Sci. Int. Journal 15 (2017) 1. https://doi.org/10.4314/jasem.v25i10.10.

S. O. Elkhateeb & M.A.G Abdellatif, ‘‘Delineation potential gold mineralization zones in a part of central eastern desert, Egypt using airborne magnetic and radiometric data", NRIAG J Astron Geophysics. 7 (2018) 361. https://doi.org/10.1016/j.nrjag.2018.05.010.

J.A. Mono, T. Ndougsa-Mbarga, Y. Tarek, D.J. Ngoh & O.U.I.O. Amougou ‘‘Estimation of curie point depths, geothermal gradients and near-surface heat flow from spectral analysis of aeromagnetic data in the Loum-Minta area (Centre-East Cameroon)", Egyptian Journal of Petroleum 27 (2018) 1291. https://doi.org/10.1016/j.ejpe.2018.07.002.

Y. Abubakar, S. Lim Hwee & A. A. Ismail, ‘‘Curie-point depths, geothermal gradients and sub-surface heat flow estimation from spectral analysis of high-resolution aeromagnetic data over Gongola basin and its environs, Northeastern Nigeria", Sains Malaysiana 51 (2022) 657. http://doi.org/10.17576/jsm-2022-5103-03.

M. B. Yakubu, K. M. Lawal, B. B. M. Dewu & A. E. Ikpokonte, ‘‘Investigation of geothermal energy resource potential using the aero-magnetic and aero-radiometric data of Kano, Nigeria", Fudma journal of sciences 6 (2022) 296. https://doi.org/10.33003/fjs-2022-0601-900.

K. Ewa & S. Kryrowska, ‘‘Geothermal exploration in Nigeria", Proceedings world geothermal congress. Zaria, Nigeria", (2010) 25. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1152.pdf.

T. O. Lawal & L. I. Nwankwo, ‘‘Evaluation of the depth to the bottom of magnetic sources and heat flow from high resolution aeromagnetic (HRAM) data of part of Nigeria sector of chad basin", Arabian J. Geosciences 10 (2017) 1. http://dx.doi.org/10.1007/s12517-017-3154-2.

T. O. Lawal, L. I. Nwankwo, A. A. Iwa, J. A. Sunday & M. M. Orosun, ‘‘Geothermal energy potential of the Chad basin, north-eastern Nigeria", Journal of Applied Sciences and Environmental Management 22 (2018) 1817. https://www.ajol.info/index.php/jasem.

B. E. Ikumbur, ‘‘The correlation of geothermal energy potential deduced from aeromagnetic and aeroradiometric data of Akiri and environs, NorthCentral Nigeria", Nigerian Society of Physical Sciences 1 (2023) 5. https://flayoophl.com/journals/index.php/rans.

S. Taufiq, F. N. Okeke & D. N. Obiora ‘‘Assessment of geothermal potential of parts of Sokoto Basin, Northwest Nigeria using aero-radiometric data", Model Earth Syst. Environ 7 (2021) 1217. https://doi.org/10.1007/s40808-020-01013-3.

A. T. Shehu, E. E. Udensi, J. O. Adeniyi & S. A. Jonah, ‘‘Spectral analysis of the magnetic residual anomalies over the Upper Sokoto Basin, Nigeria", Zuma J. Pure Appl. 6 (2021) 37. https://www.researchgate.net/publication/355163911_Spectral_analysis_of_the_magnetic_residual_anomalies_over_the_Upper_Sokoto_Basin_Nigeria.

A. A. Adetona, E. E. Udensi & G. A. Agelaga, ‘‘Determination of depth to buried rocks under the lower Sokoto Basin, Nigeria using aeromagnetic data", Nigeria J. Phys. 19 (2007) 275. https://doi.org/10.4314/njphy.v19i2.38144.

L. I. Nwankwo & A. T. Shehu, ‘‘Evaluation of curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria", Journal of Volcanology and Geothermal Research 305 (2015) 45. https://doi.org/10.1016/j.jvolgeores.2015.09.017.

N. G. Obaje, Geology and mineral resources of Nigeria Dordtecht, Heidelberg, London, Springer, 2009, pp 218. https://link.springer.com/book/10.1007/978-3-540-92685-6.

I. Garba, ‘‘Geochemical characteristics of mesothermal gold mineralisation in the Pan-African (600 ± 150 Ma) basement of Nigeria", Applied earth sciences (Trans Inst Min Met B) 112 (2003) 319. https://doi.org/10.1179/0371745032250031.

B. J. Fagbohun, A. O. Ayotunde, A. B. Oluseyi & J. A. Femi, ‘‘Remote detection and interpretation of structural style of the Zuru schist belt, Northwest Nigeria", Geocarto International 37 (2020) 978. https://doi.org/10.1080/10106049.2020.1753822.

Nigerian Geological Survey Agency, Geological map sheets, Nigerian Geological Survey Agency, Abuja, Nigeria, 2009, pp. 107-174.

S. Rajagopalan, ‘‘Analytical signal vs reduction to pole: solutions for low magnetic latitudes", Exploration Geo. 34 (2003) 257. https://doi.org/10.1071/EG03257.

A. A. Akinlalu, A. O. Adelusi, G. M. Olayanju, K. A. N. Adiat, G. O. Omosuyi, A. Y. B. Anifowose & B. E. Akeredolu, ‘‘Aeromagnetic mapping of basement structures and mineralization characterization of Ilesa Schist Belt, Southwestern Nigeria", J. African Earth Sci. 138 (2018) 383. https://doi.org/10.1016/j.jafrearsci.2017.11.033.

N. K. Olsunkanmi, O. A. Olufemi, S. Olatunji, N. B. Salawa & B. Toba, ‘‘Interpretation of high resolution aeromagnetic data of Kaoje and its environ, western part of the Zuru Schist belt, Nigeria: implication for Fe–Mn occurrence", Heliyon 6 (2020) e03320. https://doi.org/10.1016/j.heliyon.2020.e03320.

Y. Okubo, R. J. Graf, R. O. Hansen, K. Ogawa & H. Tsu, ‘‘Curie point depths of the island of Kyushu and surrounding area Japan", Geophysics 50 (1985) 481. https://doi.org/10.1190/1.1441926.

C. A. Finn & D. Ravat, ‘‘Magnetic depth estimates and their Potential for constraining crustal composition and heat flow in Antarctica", Eos Transactions American Geophysical Union 85 (2004) T11A. https://www.researchgate.net/publication/241374433_Magnetic_Depth_Estimates_and_Their_Potential_for_Constraining_Crustal_Composition_and_Heat_Flow_in_Antarctica.

A. Stampolidis, I. Kane & G. N. Tsokas, ‘‘Curie point depths of Albania inferred from ground total field magnetic data", Survey Geophysics 26 (2005) 461. https://doi.org/10.1007/s10712-005-7886-2.

N. Maden, ‘‘Curie-point depth from spectral analysis of magnetic data in Erciyes Strato volcano (Central Turkey)", Pure Applied Geophysics 167 (2010) 349. https://doi.org/10.1007/s00024-009-0017-0.

M. Salk, O. Pamukcu & I. Kaftan, ‘‘Determination of Curie point dept and heat flow from magsat data of western Anatolia", Journal of Balkan geophysical society 8 (2005) 149. https://www.researchgate.net/publication/237706743_Determination_of_the_Curie_Point_Depth_and_Heat_Flow_From_Magsat_Data_of_Western_Anatolia.

I.Garba &S.O.Akande, ‘‘Theoriginand significanceofnon-aqueousCO2 fluid inclusions in the auriferous veins of Bin Yauri, northwestern Nigeria", Mineral. Deposita 27 (1992) 249. https://doi.org/10.1007/BF00202550.

Geological map of the entire southwestern part of Sokoto basin, showing the representative rocks distribution of the basin modified after Rajagopalan \cite{b31}, inset of the geological map of Nigeria

Published

2024-06-12

How to Cite

Geothermal parameter assessment in the Southwestern Sokoto Basin, Nigeria, using spectral analysis (centroid method). (2024). Recent Advances in Natural Sciences, 2(1), 47. https://doi.org/10.61298/rans.2024.2.1.47

Issue

Section

Articles

How to Cite

Geothermal parameter assessment in the Southwestern Sokoto Basin, Nigeria, using spectral analysis (centroid method). (2024). Recent Advances in Natural Sciences, 2(1), 47. https://doi.org/10.61298/rans.2024.2.1.47