Copper catalysis the synthesis of functionalized glycine-based sulphonamides: In silico and in vitro antibacterial studies



Copper , N-arylation , Functionalized , Sulphonamides glycine, In silico studies


The synthesis of functionalized glycine-based sulphonamides via copper catalyzed N-arylation reaction and the in silico, in vitro antibacterial studies is reported. The procedure involved the initial synthesis of substituted p-toluenesulphonamides and substituted benzenesulphonamides by the reaction of glycine with p-toluenesulphonyl chloride and benzenesulphonyl chloride respectively in aqueous basic medium. The syn[1]thesized compounds were acetylated by reacting them with acetic anhydride and sodium acetate followed by acylation and amidation to yield amidated p-toluenesulphonamides and benzenesulphonamides respectively. Copper catalyzed N-arylation of the amidated products with aryltriolborates resulted in the synthesis of benzene, and 2-chlorophenyl derivatives of the amidated products. The synthesized compounds were characterized using FTIR, 1HNMR and elemental analysis and the spectra were in agreement with the assigned structures. The in silico antibacterial studies revealed that the compounds possess significant antibacterial potency in the respective bacteria cells and could be further employed as potential anti-bacterial agents. The in vitro antimicrobial study revealed that most of the synthesized compounds possess antibacterial activities.



A. K. Gadad, C. S. Mahajanshetti, S. Nimbalkar, & A. Raichurkar, ‘‘Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato6-arylimidazo[2,1-b]- 1,3,4-thiadiazole-2-sulfon amide derivatives’’, European Journal of Medicinal Chemistry 35 (2000) 853.

G. Barbaro, A. Scozzafava, A. Mastrolorenzo, & C. T. Supuran, ‘‘Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome’’, Current pharmaceutical design 11 (2005) 1805.

M. A. Bhat, M. Imran, S. A. Khan, & N. Siddiqui, ‘‘Biological activities of sulfonamides’’, Indian Journal of Pharmaceutical Sciences 67 (2005) 151.

M. Khanusiya, & Z. Gadhawala, ‘‘Chalcones-sulphonamide hybrids: synthesis, characterization and anticancer evaluation’’, Journal of the Korean Chemical Society 63 (2019) 85.

H. Eshghi, M. R. Rahimizadeh, M. Zokaei, S. Eshghi, Z. Faghihi, E. Tabasi, & M. Kihanyan, ‘‘Synthesis and antimicrobial activity of some new macro cyclic bissulfonamide and disulphides’’, European Journal of Chemistry 2 (2011) 47.

M. C. Egbujor, U. C. Okoro, S. Okafor, & N. E. Nwankwo, ‘‘Design, synthesis and molecular docking of novel serine-based sulphonamide bioac tive compounds as potential antioxidant and antimicrobial agents’’, Indonesian American Journal of Physical Sciences 06 (2019) 12232. https: //

E. A. Onoabedje, A. Ibezim, U. C. Okoro, & S. Batra, ‘‘New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities’’ PLoS ONE 16 (2021) e0243305.

K. J. Orie, R. U. Duru, & R. I. Ngochindo, ‘‘Metal complexes of heterocyclic sulphonamide: synthesis, characterization and biological activity’’, Science Journal of Analytical Chemistry 9 (2021) 104.

K. J. Orie, R. U. Duru, & R. I. Ngochindo, ‘‘Synthesis and spectroscopic studies of zinc (II) ion and copper (II) ion complexes of 4-Methyl-N-(pyridin-2-yl)benzene sulphonamide’’, World Journal of Applied Chemistry 6 (2021) 19.

K. J. Orie, C. D. Ike, & J. U. Nzeneri, ‘‘Synthesis and characterization of metal complexes with 4-Methyl-N-(p-methylphenylsulphonyl)-N-(pyridin2-yl)benzene sulphonamide’’, Modern Chemistry 9 (2021) 46.

A. Van den Bogaard, N. London, C. Driessen, & E. Stobberingh, ‘‘Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers’’, Journal of Antimicrobial Chemotherapy 47 (2001) 763.

M. C. Egbujor, & U. C. Okoro, ‘‘New methionine-based ptoluenesulphonamoylcarboxamide derivatives as antimicrobial and antioxidant agents: design, synthesis, and molecular docking’’, Journal of Pharmacy and Research International 28 (2019) 1.

M. M. Sirdar, J. Picard, S. Bisschop, A. R. Jambalang, & B. Gummow, ‘‘A survey of antimicrobial residues in table eggs in Khartoum State, Sudan’’, Journal of Veterinary Research Onderstepoort 79 (2012) 9.

S. P. Fier, J. Luo, & J. F. Hartwig, ‘‘Copper-mediated fluorination of aryliodides’, Journal of American Chemical Society 134 (2012) 10795.

S. P. Fier, J. Luo, & J. F. Hartwig, ‘‘Copper-mediated fluorination of arylboronate esters. Identification of a copper (III) fluoride complex’’, Journal of American Chemical Society 135 (2013) 2552.

E. A. Standley, & T. G. Jamision, ‘‘Simplifying nickel (0) catalysis: An airstable Nickel precatalyst for the internally selective Benzylation of terminal Alkenes’’, Journal of American Chemical Society 135 (2013) 1585.

D. Yoshii, ‘‘Selective dehydrogenative mono- or diborylation of styrenes by supported Copper catalysts’’, ACS Catalysis 9 (2019) 3011.

E. W. Alison, & S. S. Shannon, ‘‘Copper(ii)-mediated oxidative cyclization of enamides to oxazoles’’, Organic Biomolecule Chemistry 10 (2012) 3866.

R. Bernini, S. Cacchi, G. Fabrizi, E. Filisti, & A. Sferrazza, ‘‘3-aroylindoles via Copper-catalyzed cyclization of N-(2-Iodoaryl)enaminones’’, Synlett 9 (2009) 1480.

J. Yan, J. Li, & D. Cheng, ‘‘Mild and efficient Indium metal catalyzed synthesis of solfonamides and sulfonic esters’’, Synlett 16 (2007) 2501.

H. Liangbin, J. Huanfeng, Q. Chaorongi, & L. Xiaohang, ‘‘Copper catalyzed intermolecular oxidative [3 + 2] cycloaddition between Alkenes and Anhydrides: A new synthetic approach to γ-lactones’’, Journal of the American Chemical Society 132 (2010) 17652.

C. Wan, J. Zhang, S. Wang, J. Fan, & Z. Wang, ‘‘Facile synthesis of poly substituted oxazoles via a copper-catalyzed tandem oxidative cyclization’’, Organic Letters 12 (2010) 2338.

M. Jithunsa, M. Ueda, & O. Miyata, ‘‘Copper(II)chloride-mediated cyclization reaction of N-alkoxy-ortho-alkynylbenzamides’’, Organic Letters 13 (2011) 518.

C. W. Cheung, & L. B. Stephen, "Room temperature copper(II)-catalyzed oxidative cyclization of enamides to 2,5-disubstituted oxazoles via vinylic C-H functionalization’’, The Journal of Organic Chemistry 77 (2012) 7526.

U. Satoshi, & N. Hideko, ‘‘Facile synthesis of 1,2,4-triazoles via a Coppercatalyzed tandem addition−oxidative cyclization’’, Journal of American Chemical Society 131 (2009) 15080.

J. Ma, & D. Cahard, ‘‘Copper(II) triflate-bis(oxazoline)-catalysed enantioselective electrophilic fluorination of β-ketoesters’’, Tetrahedron: Asymmetry. 15 (2004) 1007.

O. Trott, & A. J. Olson, ‘‘AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading’’, Journal of Computational Chemistry 31 (2010) 455.

Cu2O catalysis in the synthesis of substituted arylsulphonamide.



How to Cite

Copper catalysis the synthesis of functionalized glycine-based sulphonamides: In silico and in vitro antibacterial studies. (2024). Recent Advances in Natural Sciences, 2(1), 36.

How to Cite

Copper catalysis the synthesis of functionalized glycine-based sulphonamides: In silico and in vitro antibacterial studies. (2024). Recent Advances in Natural Sciences, 2(1), 36.