On the convergence rate of d-dimensional fourth-order beta polynomial kernels

Authors

  • Benson Ade Eniola Afere Prince Abubakar Audu University, Anyigba, and 272102, Nigeria

Keywords:

Kernel density estimation, d-dimensional fourth-order kernels, beta polynomial kernels, AMISE, rate of convergence

Abstract

This article focuses on formulating the Asymptotic Mean Integrated Squared Error (AMISE) scheme for d-dimensional fourth-order beta polynomial kernels in the context of kernel density estimation. The primary objective is to assess how this scheme influences the convergence rate, which directly impacts the speed at which the estimated density converges to the true density, contributing to bias reduction. The article employs AMISE as a metric to quantify the overall dissimilarity between the estimated density fˆ and the true density f . Quantitatively, the proposed convergence scheme is compared to existing ones by Deheuvels and Jones et al. across various scenarios of sample sizes and dimensionalities. The study’s findings provide compelling evidence that fourth-order beta polynomial kernels exhibit a significantly faster convergence rate compared to the rates documented in the literature. This accelerated convergence rate implies a substantial improvement in bias reduction capabilities. The results underscore the potential effectiveness of fourth-order beta polynomial kernels as a powerful tool for enhancing the accuracy of kernel density estimation tasks.

Dimensions

B. W. Silverman, Density estimation for statistics and data analysis, Chapman & Hall, London, 1986. https://www.routledge.com/Density-Estimation-for-Statistics-and-Data-Analysis/Silverman/p/book/ 9780412246203.

M. P. Wand & M. C. Jones, Kernel smoothing, Chapman & Hall, London, 1995. https://www.taylorfrancis.com/books/mono/10.1201/b14876/ kernel-smoothing-wand-jones.

H. Akaike, ‘‘An approximation to the density functions ", Annals of the Institute of Statistical Mathematics 6 (1954) 127. https://doi.org/10.1007/ BF02900741.

E. Fix & J. L. Hodges, ‘‘Discriminatory analysis: nonparametric discrimination consistency properties ", Report No. 4, Project No. 21.29.004, USAF School of Aviation Medicine, Randolph Field, Texas, 1951, pp. 238-247. https://sci-hub.se/10.2307/1403797.

M. Rosenblatt, ‘‘Remarks on some nonparametric estimates of a density function ", Annals of Mathematical Statistics 27 (1956) 832. https://doi. org/10.1007/978-1-4419-8339-8-13.

B. W. Silverman, ‘‘Density ratios, empirical likelihood, and cot death ", Applications of Statistics 27 (1978) 26. https://doi.org/10.2307/2346222.

D.W. Scott&L. E.Factor, ‘‘Monte carlostudyof threedata-basednonparametric probability density estimators ", Journal of the American Statistical Association 76 (1981) 9. https://www.jstor.org/stable/2287033.

M. Rudemo, ‘‘Empirical choice of histograms and kernel density estimators ", Scandinavian Journal of Statistics 9(2) (1982) 65. https://www.jstor.org/ stable/4615859.

M. P. Wand & M. C. Jones, ‘‘Comparison of smoothing parameterizations in bivariate kernel density estimation ", Journal of the American Statistical Association 88(422) (1993) 520. https://doi.org/10.2307/2290332.

A. W. Bowman & P. J. Foster, ‘‘Adaptive smoothing and density-based tests of multivariate normality ", Journal of the American Statistical Association 88 (1993) 529. https://doi.org/10.2307/2290333.

T. Duong, & M. L. Hazelton, ‘‘Plug-in bandwidth matrices for bivariate kernel density estimation ", Journal of Nonparametric Statistics 15 (2003) 17. https://www.mvstat.net/tduong/research/publications/ duong-hazelton-2003-jns.pdf.

B. A. Afere, ‘‘A family of multivariate higher-order hybrid polynomial kernels in kernel density estimation (Doctoral dissertation)", University of Benin, Benin City, Nigeria, 2010.

M. C. Jones & D. F. Signorini, ‘‘A comparison of higher-order bias kernel density estimation", Journal of the American Statistical Association 92 (1997) 1063. https://doi.org/10.1080/01621459.1997.10474062.

J. E. Chacón, ‘‘Data-driven choice of the smoothing parametrization for kernel density estimators ", Canadian Journal of Statistics 37 (2009) 249. https://doi.org/10.1002/cjs.10016.

T. Duong & M. L. Hazelton, ‘‘Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimator ", Journal of Multivariate Analysis 15 (2004) 17. https://doi.org/10.1016/j.jmva.2004. 04.004.

P. Hall & J. S. Marron, ‘‘Lower bounds for bandwidth selection in density estimation ", Probability Theory and Related Fields 90 (1991) 149. https: //link.springer.com/article/10.1007/BF01192160.

P. Hall, S. J. Sheather, M. C. Jones & J. S. Marron, ‘‘On optimal data-based bandwidth selection in kernel density estimation ", Biometrika 78 (1991) 263. https://doi.org/10.2307/2337251.

F. Kimari, A. Adem & L. Kiti, ‘‘Efficiency of various bandwidth selection methods across different kernels ", IOSR Journal of Mathematics 15 (2019) 55. https://doi.org/10.9790/5728-1503015562.

S. J. Sheather & M. C. Jones, ‘‘A reliable data-based bandwidth selection methodforkerneldensityestimation", JournaloftheRoyalStatisticalSociety, Series B (Methodological) 53 (1991) 683. https://www.jstor.org/stable/ 2345597.

I. U. Siloko, E. A. Siloko, O. Ikpotokin, C. C. Ishiekwene & B. A. Afere, ‘‘On asymptotic mean integrated squared error’s reduction techniques in kernel density estimation ", International Journal of Computational and Theoretical Statistics, 6 (2019) 89. https://journal.uob.edu.bh/ handle/123456789/3479.

T. Cacoulos, ‘‘Estimation of a multivariate density ", Annals of the Institute of Statistical Mathematics, 18 (1966) 179. https://doi.org/10.1007/ BF02869528.

A. W. Bowman, ‘‘An alternative method of cross-validation for the smoothing of density estimation ", Biometrika, 71(2) (1984) 353. https://doi.org/ 10.1093/biomet/71.2.353.

M. Jiang & S. P. Provost, ‘‘A hybrid bandwidth selection methodology for kernel density estimation", Journal of Statistical Computation and Simulation 84 (2014) 614. https://doi.org/10.1080/00949655.2012.721366.

D. W. Scott, Multivariate Density Estimation: Theory, practice and visualization, John Wiley & Sons Inc., New York, 1992. https://onlinelibrary. wiley.com/doi/book/10.1002/9780470316849.

J. E. Chacón & T. Duong, Multivariate Kernel Smoothing and Its Applications, Chapman & Hall, London, 2018. https://www.routledge.com/ Multivariate-Kernel-Smoothing-and-Its-Applications/Chacon-Duong/p/book/9780367571733.

E. Parzen, ‘‘On the estimation of a probability density function and the mode ", Annals of Mathematical Statistics, 33 (1962) 1065. https://sci-hub. st/10.1214/aoms/1177704472.

Published

2023-11-29

How to Cite

On the convergence rate of d-dimensional fourth-order beta polynomial kernels. (2023). Recent Advances in Natural Sciences, 1(2), 29. https://doi.org/10.61298/rans.2023.1.2.29

Issue

Section

Articles

How to Cite

On the convergence rate of d-dimensional fourth-order beta polynomial kernels. (2023). Recent Advances in Natural Sciences, 1(2), 29. https://doi.org/10.61298/rans.2023.1.2.29