Characteristics of temperature-dependent shear flow in an ultrasonicated ferrofluid

Authors

Keywords:

Strain rate, Complex viscosity, Torque, Magnetization, Coercivity, Shear stress, Modulus

Abstract

The rheological effect of manganese zinc (Mn-Zn) ferrite ferrofluid was studied and the impact of temperature on the magnetoviscosity and viscoelastic system of manganese-zinc ferrite ferrofluid generated by co-precipitation process is investigated. At 25 C, a ferrofluid structure that is both hard and elastic is produced. As the temperature rises, the fluid structure loses its elasticity and becomes semi-rigid. When a low relaxation modulus is applied, the fluid behavior, which is temperature-dependent, exhibits the development of linear stress relaxation and steady state flow. When a greater relaxation modulus is used, non-steady state flow results. At a high temperature of 50 C, steady state flow is quickly obtained, whereas at a low temperature, equilibrium or steady state is attained more slowly. At low temperatures, the fluid exhibits a solid-like structure, whereas at high temperatures, a liquid-like structure forms as the fluid’s viscosity decreases. With the creation of yield stress in the region with high shear rates, shear stress increases with temperature, and yield stress increases with temperature. The viscoelastic system is underdamped, and the amount of fluid deflected at 25 C is small, which prevents the disruption of the fluid’s rheology. This develops as a result of the presence of a small deflection angle, which facilitates the development of high magnetoviscosity at low temperature. High viscous effect forms at low temperatures due to the creation of low shear stress and low deflection angle at temperature 25 C. The sample has a single phase and FCC structure, which X-ray diffraction research has verified.

Dimensions

N. Jahan, S. Pathak, K. Jain & R. P. Pant, ‘‘Enhancement in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid’’, Colloids Surface A: Physico chem. Eng. Aspects. 529 (2017) 88. https://doi.org/10.1016/j.colsurfa.2017.05.057.

V. Kumar, A. Rana, M.S.Yadav&R.P.Pant, ‘‘Size-inducedeffectonnanocrystalline CoFe2O4", Journal of Magnetism and Magnetic Material320 (2008) 1729. https://doi.org/10.1016/j.jmmm.2008.01.021.

N. Jahan, G. A Basheed, K. Jain, S. Pathak & R. P. Pant, ‘‘Dipolar interaction and magneto-viscoelasticity in nanomagnetic fluid’’, Journal of Nanoscience and Nanotechnology 18 (2018) 2746. https://doi.org/10.1166/jnn.2018.14532.

P. Sharma, V. V. Alekhya, S. Pathak, K. Jain, P. Tomar, G. A. Basheed, K. K. Maurya & R. P. Pant, ‘‘A novel experimental approach for direct observation of magnetic field induced structuration in ferrofluid’’, Journal of Magnetism and Magnetic Materials 534 (2021) 168024. https://doi.org/ 10.1016/j.jmmm.2021.168024.

K. Jain, S. Pathak & R. P. Pant, ‘‘Enhanced magnetic properties in ordered oriented ferro fibres’’, RSC Advances 6 (2016) 70943. https://doi.org/10. 1039/C6RA12650B.

P. Shima, P. John and R. Baldev, ‘‘Magnetically controllable nanofluid with tunable thermal conductivity and viscosity’’, Applied Physics Letter 95 (2009) 133112. https://doi.org/10.1063/1.3238551.

S. E. Premalatha, R. Chokkalingam & M. Mahendran, ‘‘Magneto Mechanical Properties of Iron Based MR Fluids, American Journal of Polymer Science’’, 2 (2012) 50. https://doi.org/10.5923/j.ajps.20120204.01.

S. Singamaneni, V. N. Bliznyuk, C. Binek & E. Y. Tsymbal, ‘‘Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications’’, Journal of Material and Chemistry 21 (2011) 16819. https://doi.org/10.1039/c1jm11845e.

X. K. Chen & K. Q. Chen, ‘‘Thermal Properties of carbon nanomaterials", Journal of Physics Condensed Matter 32 (2020) 153002. https://doi.org/10. 1088/1361-648X/ab5e57.

P. Shima, P. John & R. Baldev, ‘‘Magnetically controllable nanofluid with tunable thermal conductivity and viscosity’’, Applied Physics Letter 95 (2009) 133112. https://doi.org/10.1063/1.3238551.

X. K. Chen, X. Y. Hu, P. Jia, Z. X. Xie & J. Liu, ‘‘Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling’’, International Journal Mech Science 206 (2021) 106576. https://doi.org/10.1016/j.ijmecsci.2021.106576.

L. A. Powell, W. Hu and N. M. Wereley, ‘‘Magnetorheological fluid composites synthesized for helicopter landing gear applications’’, Journal of Intelligent Material System Structure 24 (2013) 1043. https://doi.org/10.1177/1045389X13476153.

G. Paul, P. K. Das and I. Manna, ‘‘Synthesis, characterization and studies on magneto-viscous properties of magnetite dispersed water based nanofluids’’, Journal of Magnetism and Magnetic Material 404 (2021) 29. https://doi.org/10.1016/j.jmmm.2015.11.085.

T. Liu, X. Gong, Y. Xu and S. Xuan, ‘‘Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium’’, Soft Matter 10 (2014) 813. https://doi.org/10.1039/c3sm52865k.

K. Shahrivar, A. L. Ortiz and J. A de Vicente, ‘‘Comparative study of the tribological performance of ferrofluids and magnetorheological fluids within steel–steel point contacts’’, Tribology International 78 (2014) 25. https://doi.org/10.1016/j.triboint.2014.05.008.

K. Shah, J. S. Oh, S. B. Choi & R. Upadhyay, ‘‘Plate-like iron particles based bidisperse magnetorheological fluid", Journal of Applied Physics 114 (2013) 213904. https://doi.org/10.1063/1.4837660.

H. Anwar, A. Maqsood & I. H. Gul, ‘‘Effect of synthesis on structural and magneticpropertiesofcobaltdopedMn-Znnanoferrites’’, Journalofalloys and compounds 626 (2015) 410. https://doi.org/10.1016/j.jallcom.2014.11. 177.

A. A Ibiyemi, O. Akinrinola & G. T. Yusuf, ‘‘Photoelectric and optoelectronic effects of hard ferromagnetic manganese cobalt (Mn-Co) ferrite nanoparticles for high frequency device application’’, Applied physics A; material science and processing 128 (2022) 792. https://doi.org/10.1007/ s00339-022-05926-x.

V. Šepelah, I. Bergmann, A. Feldhoff, P. Heitjans, K. Frank, M. Dirk, J. Fred, S. J. Campbell and D. Klaus, ‘‘Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior’’, The Journal of Physical Chemistry C 111 (2019) 5026. https://doi.org/10.1007/s10751-006-9251-3.

M. Ajmal & A. Maqsood, ‘‘AC conductivity, density related, and magnetic properties of Ni1−xZnxFe2O4 ferrites with the variation of zinc concentration’’, Material Letters 62 (2008) 2077-2080. https://doi.org/10.1016/j.matlet.2007.11.019.

A. Mishra, S. Pathak, P. Kumar, A. Singh, K. Jain, R. Chaturvedi, D. Singh, G. A. Basheed & R. P. Pant, ‘‘Measurement of Static and Dynamic Magneto-Viscoelasticity in Facile Varying pH Synthesized CoFe2O4Based Magnetic Fluid", IEEE Transactions on Magnetics 55 (2021) 4601107. https://doi.org/10.1109/TMAG.2019.2936802.

B. K. Kumbhar, S. R. Patil and S. M. Sawan, ‘‘Synthesis and characterization of magnetorheological (MR) fluids for MR brake application", Engineering Science and Technology, an International Journal 18 (2021) 432. https://doi.org/10.1016/J.JESTCH.2015.03.002.

A. A Ibiyemi, G. T. Yusuf, O. Olubosede, A. Olusola and H. A Akande, ‘‘ Photoelectric and magnetic properties of chemically synthesized Cd–Ni Ferrite nanomagnetic particles", Physica Scripta 97 (2022) 025804. https://doi.org/10.1088/1402-4896/ac4a95.

A. A. Ibiyemi, G. T. Yusuf and A. Olusola, ‘‘Influence of temperature and magnetic field on rheological behavior of ultra-sonicated and oleic acid coated cobalt ferrite ferrofluid’’, Physica scripta 96 (2021) 125842. https://doi.org/10.1088/1402-4896/ac2ecb.

D. Y. Borin, V. V. Korolev, A. G. Ramazanova, S. Odenbach, O. V. Balmasova, V. I. Yashkova & D. V. Korolev, ‘‘Magneto viscous effect in ferrofluids with different dispersion media", Journal of Magnetism and Magnetic Material 416 (2016) 110. https://doi.org/10.1016/J.JMMM.2016.05. 024.

J. M. Linke & S. Odenbach, ‘‘Anisotropy of the magneto viscous effect in a ferrofluid with weakly interacting magnetite nanoparticles’’, Journal of Physics: Condensed Matter 27 (2015) 176001. https://doi.org/10.1088/ 09538984/27/17/176001.

H. Masoud, L. Vafajoo, E. Ghasemi & B. H. Salman, ‘‘Experimental investigation the effect of nanoparticle concentrationon the rheological behavior of paraffin-based nickel ferrofluid’’, International Journal of Heat Mass Transfer 93 (2016) 228. https://doi.org/10.1016/j.ijheatmasstransfer.2015. 09.082.

M. Osial, M. Nowicki, E. Klejman & L. Fras, ‘‘Investigation of welldispersed magnetorheological oil-based suspension with superparamagnetic nanoparticles using modified split Hopkinson pressure bar’’, Rheological Acta 61 (2022) 111. https://doi.org/10.1007/s00397-021-01318-9.

V. S. Balaji, V. Y. Victor & C. B. Anna, ‘‘Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear’’, New Journal of Physics 16 (2014) 075009. https://doi.org/10.1088/1367-2630/16/7/ 075009.

Y. Yongbo, L. Lin, C. Guang & L. Weihua. Magnetorheological properties of aqueous ferrofluid. Journal of the Society of Rheology 24 (2005) 25. https://doi.org/10.1678/rheology.34.25.

T.Mitsumaka&T.Okazaki, ‘‘Magnetization-inducedreductionindynamic modulus of polyurethane elastomers loaded with ferrite’’, Japanese Journal of Applied Physics 46 (2007) 4220. https://doi.org/10.1143/JJAP.46.4220.

M. H. Wagner, E. Narimissa & T. Shahid, ‘‘Elongational viscosity and brittle fracture of bidispersed blends of a high and several low molar mass polystyrenes’’, Rheological Acta 60 (2021) 803. https://doi.org/10.1007/ s00397-021-011304-1.

Y. Li, P. Han, D. Li, S. Chen and Y. Wang, ‘‘Typical dampers and energy harvesters based on characteristics of ferrofluids’’, Friction 11 (2023) 165. https://doi.org/10.1007/s40544-022-0616-7.

D. Borin, R. Müller & S. Odenbach, ‘‘Magnetoviscosity of a Magnetic Fluid Based on Barium Hexaferrite Nanoplates’’, Materials 14 (2021) 1870. https://doi.org/10.3390/ma14081870.

M. J. Pastoriza-Gallego, M. Pérez-Rodríguez, C. Gracia-Fernández & M. M. Piñeiro, ‘‘Study of viscoelastic properties of magnetic nanofluids: An insight into their internal structure’’, Soft Matter 9 (2013) 11690. https://doi.org/10.1039/c3sm51952j.

A. A. Ibiyemi & R. P. Pant, ‘‘A trivalent ferrite ferrofluid compound’s rheological response to angular frequency, magnetic induction and shear induction of chain clusters’’, Physica Scripta (2023) https://doi.org/10.1088/ 14024896/ad094c.

J. J. Vadasz, G. Saneshan and V. Peter, ‘‘Heat transfer enhancement in nanofluids suspensions: possible mechanism and explanations’’, International Journal of Heat and Mass Transfer 48 (2005) 2673. https://doi.org/10.1016/ j.ijheatmasstransfer.2005.01.023.

A. A. Ibiyemi & G. T. Yusuf, ‘‘Rheological Investigation of Strain Rate and Magnetic Field on the Magnetorheology of Zinc Ferrite Ferrofluid’’, Applied Physics A 128 (2022) 591. https://doi.org/10.1088/1402-4896/ ac2ecb.

M. D. Rao, P. S. Goyal, B. Panda & R. I. K. Moorthy, ‘‘Ferrofluids for Active Shock Absorbers’’, Materials Science and Engineering 360 (2018) 012002 https://doi.org/10.1088/1757-899X/360/1/012002.

C. Upadhyay, H. C. Verma and S. Anand, ‘‘Cation distribution in nanosized Ni–Znferrites’’, Journal of Applied Physics 95 (2004) 5746. https://doi.org/ 10.1063/1.1699501.

J. P. Segovia-Gutierrez, J. de Vicente, R. Hidalgo-Alvarez & A. M. Puertas, ‘‘Brownian dynamics simulations in magnetorheology and comparison with experiments’’, Soft Matter 9 (2013) 6970. https://doi.org/10.1039/C3SM00137G.

C. Hou, H. Yu, Q. Zhang, Y. Li and H. Wang, ‘‘Preparation and magnetic property analysis of monodisperse Co–Zn ferrite nanospheres’’, Journal of Alloys Compound 491 (2010) 431. https://doi.org/10.1016/j.jallcom.2009. 10.217.

R. Topkaya, A. Baykal and A. Demir, ‘‘Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy’’, Journal of nanoparticle research 15 (2013) 1359. https://doi.org/10.1007/ s11051-012-1359-6.

J. A. Ruiz-López, Z. W. Wang, R. Hidalgo-Alvarez & J. de Vicente, ‘‘Simulations of model magnetorheological fluids in squeeze flow mode’’, Journal of Rheology 61 (2017) 871. https://doi.org/10.1122/1.4990641.

A. Wiehe, C. Kieburg & J. Maas, ‘‘Temperature induced effects on the durability of MR fluids’’, Journal of Physics: Conference Series 412 (2013) 012017. https://doi.org/10.1088/1742-6596/412/1/012017.

D. Wang, B. Zi, Y. S. Zeng & F. W. Xie, ‘‘An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch’’, Smart Material Structure 24 (2015) 055020. https://doi.org/10. 1007/s13367-021-0024-y.

B. Francesco, F. Paola & F. Francesco, ‘‘Temperature effect on the torque characteristic of a magnetorheological clutch", Mechanics of advanced materials and structures 22 (2015) 150. https://doi.org/10.1080/15376494.2014.910581.

Published

2023-11-28

How to Cite

Characteristics of temperature-dependent shear flow in an ultrasonicated ferrofluid. (2023). Recent Advances in Natural Sciences, 1(2), 28. https://doi.org/10.61298/rans.2023.1.2.28

Issue

Section

Articles

How to Cite

Characteristics of temperature-dependent shear flow in an ultrasonicated ferrofluid. (2023). Recent Advances in Natural Sciences, 1(2), 28. https://doi.org/10.61298/rans.2023.1.2.28