One-pot synthesis and antimicrobial efficacy of polymeric schiff base metal complexes derived from o-phenylenediamine and terephthalaldehyde

Authors

  • Wahab Adesina Osunniran Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences Kwara State University, Malete, P.M.B. 1530, Kwara State, Nigeria https://orcid.org/0000-0001-6219-4056
  • Rukayat Abdulmalik Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences Kwara State University, Malete, P.M.B. 1530, Kwara State, Nigeria
  • Sulaiman Habib Adana Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences Kwara State University, Malete, P.M.B. 1530, Kwara State, Nigeria
  • Yusuf Oloruntoyin Ayipo Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences Kwara State University, Malete, P.M.B. 1530, Kwara State, Nigeria

Keywords:

Schiff base polymeric ligand, Polycondensation, Polymeric schiff base metal complexes, Antimicrobial efficacy

Abstract

The antimicrobial efficacies of Schiff base Polymeric Ligand (SBPL) and Polymeric Schiff base Metal Complexes (PSBMCs) have been explored. Schiff base Polymeric Ligand (SBPL) and Polymeric Schiff base Metal Complexes (PSBMCs) derived from polycondensation of terephthalaldehyde, o-phenylenediamine and metal ions (M–L, Al3+ , Cu2+ , Zn2+ , Fe3+ ) were synthesized in ethanol at room temperature through one-pot synthesis. The PSBL and PSBMCs synthesized were characterized using spectroscopic techniques: FT-IR (Fourier Transform Infrared) and Uv-vis (Ultraviolet visible). The spectroscopic data revealed that the azomethine functional group is involved in the complexation of metal ions with PSBL forming PSBMCs and geometry of PSBMCs is suggestive to be octahedral. The antibacterial and antifungi efficacies of SBPL and PSBMCs were examined on Staphylococcus aureus, Escherichia coli, Aspergillus niger and Aspergillus flavus employing the agar well diffusion method, Penicillin and omeprazole served as standard drug for antibacterial and antifungal activity respectively. The PBSMCs displayed promising activities in comparison with starting compound (SBPL). The Cu-L was found to be most potent antimicrobial agent against all tested bacterial and fungal.

Dimensions

[1] S. A. Olagboye, T. L. Yusuf, S. D. Oladipo & S. J. Zamisa, ‘‘Crystal structure of (E)-1-(2-nitrophenyl)-N-(o-tolyl) methanimine, C14 H12 N2 O2 ’’, Zeitschrift fur Kristallographie-New Crystal Structures 235 (2006) 833. https://doi.org/10.1515/ncrs-2020-0034.

[2] T. L. Yusuf, S. D. Oladipo, S. A. Olagboye, S. J. Zamisa & G. F. Tolufashe, ‘‘Solvent-free synthesis of nitrobenzyl Schiffbases: characterization, antibacterial studies, density functional theory and molecular docking studies’’, Journal of Molecular Structure 1222 (2020) 128857. https://doi.org/10.1016/j.molstruc.2020.128857.

[3] S. Gul, A. Alam, M. Assad, A. A. Elhenawy, M. S. Islam, S. A. A. Shah, Z. Parveen, T. A. Shah & M. Ahmad, ‘‘Exploring the synthesis, molecular structure and biological activities of novel Bis-Schiffbase derivatives: a combined theoretical and experimental approach’’, Journal of Molecular Structure 1306 (2024) 137828. https://doi.org/10.1016/j.molstruc.2024.137828.

[4] S. D. Oladipo, R. C. Luckay, K. A. Olofinsan, V. A. Obakachi, S. J. Za-misa, A. A. Adeleke, A. A. Badeji, S. A. Ogundare, & B. P. George, ‘‘Antidiabetes and antioxidant potential of Schiff bases derived from 2-naphthaldehyde and substituted aromatic amines: Synthesis, crystal structure, Hirshfeld surface analysis, computational, and in vitro studies’’, Heliyon 10 (2024) e23174. https://doi.org/10.1016/j.heliyon.2023.e23174.

[5] S. D. Oladipo, T. L. Yusuf, S. J. Zamisa, M. Shapi & T. J. Ajayi, ‘‘Synthesis, crystal structure, Hirshfeld surface analysis and DFT studies of N-(2, 6-diisopropylphenyl)-1-(4-methoxyphenyl) methanimine’’, Journal of Molecular Structure 1241 (2021) 130620. https://doi.org/10.1016/j.molstruc.2021.130620.

[6] G. Venkatesh, P. Vennila, S. Kaya, S. B. Ahmed, P. Sumathi, V. Siva, P. Rajendran & C. Kamal, ‘‘Synthesis and Spectroscopic Characterization of Schiff Base Metal Complexes, Biological Activity, and Molecular Docking Studies’’, ACS omega 9 (2024) 8123. https://doi.org/10.1021/acsomega.3c08526.

[7] S. D. Oladipoa, A. A. Adeleke, A. A. Badeji, K. I. Babalola, A. H. Labulo, I. H. Sodiq, T. Yussuf, S. O. Olalekan, ‘‘Computational investigation and biological activity of selected Schiff bases. Journal of the Nigerian Society of Physical 6 (2024) 2103. https://doi.org/10.46481/jnsps.2024.2103.

[8] J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano & M. S.Sinicropi, ‘‘A review on the antimicrobial activity of Schiff bases: Data collection and recent studies’’, Antibiotics 11 (2022) 191. https://doi.org/10.3390/antibiotics11020191.

[9] M. Mishra, K. Tiwari, A. K. Singh & V. P. Singh, ‘‘Versatile coordination behaviour of a multi-dentate Schiff base with manganese (II), copper (II)and zinc (II) ions and their corrosion inhibition study’’, Inorganica Chimica Acta 425 (2015) 36. https://doi.org/10.1016/j.ica.2014.10.026.

[10] A. A. Adeleke, M. S. Islam, O. Sanni, C. Mocktar, S. J. Zamisa & B. Omondi, ‘‘Aryl variation and anion effect on CT-DNA binding and in vitro biological studies of pyridinyl Ag (I) complexes’’, Journal of Inorganic Biochemistry 214 (2021) 111266. https://doi.org/10.1016/j.jinorgbio.2020.111266.

[11] S.G. Nozha, S. M. Morgan, S.E. Abu Ahmed, M.A. El-Mogazy, M.A. Diab, A.Z. El-Sonbati & M.I. Abou-Dobara, ‘‘Polymer complexes. LXXIV. synthesis, characterization and antimicrobial activity studies of polymer complexes of some transition metals with bis-bidentate Schiff base’’, Journal of Molecular Structure 1227 (2020) 129525. https://doi.org/10.1016/j.molstruc.2020.129525.

[12] J. Saranya, S. J. Kirubavathy, S. Chitra, W. Zarrouk, A. K. Kalpana, K. Lavanya, & B. Ravikiran, ‘‘Tetradentate schiff base complexes of transition metals for antimicrobial activity’’, Arabian Journal for Science and Engineering 45 (2020) 4683. https://doi.org/10.1007/s13369-020-04416-7.

[13] B. Adalat, F. Rahim, M. Taha, S. Hayat, N. Iqbal, Z. Ali, A. A. Shah, A. Wadood, A. U. Rehman & K. M. Khan, ‘‘Synthesis of benzofuran–based schiff bases as anti-diabetic compounds and their molecular docking studies’’, Journal of Molecular Structure 1265 (2022) 133287. https://doi.org/10.1016/j.molstruc.2022.133287.

[14] A. A. Adeleke, S. D. Oladipo, S. J. Zamisa, I. A. Sanusi & B. Omondi, ‘‘DNA/BSA binding studies and in vitro anticancer and antibacterial studies of isoelectronic Cu (I) -and Ag (I)-pyridinyl Schiff base complexes incorporating triphenylphosphine as co-ligands’’, Inorganica Chimica Acta 558 (2023) 121760. https://doi.org/10.1016/j.ica.2023.121760.

[15] I. E. Ottokere & U. F. Robert, ‘‘Synthesis, characterization and antibacterial studies of (3,3-Dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylic acid-Cr (III) Complex’’, Journal of Nepal Chemical Society 41 (2020) 1. https://doi.org/10.3126/jncs.v41i1.30370.

[16] O. Ugochukwu & I. E. Ottokere, ‘‘Synthesis, spectroscopic characterization and antibacterial activities of Co (II) complex of ofloxacin drug mixed with ascorbic acid as a secondary ligand’’, BioScientific Review 3 (2021) 1. https://doi.org/10.32350/BSR.0303.01.

[17] I. E. Ottokere, U. F. Robert, K. K. Igwe & S. U. Mpama, ‘‘Synthesis, characterization and antibacterial studies of benzylpenicillin and its Co (II) Complex’’, ChemSearch Journal 11 (2020) 9. https://www.ajol.info/index.php/csj/article/view/197367.

[18] H. Mighani, ‘‘Schiff base polymer: synthesis and characterization’’, Journal of Polymer Research 27 (2020) 150. https://doi.org/10.1007/s10965-020-02080-x.

[19] A. M. Kabir, A. N. Aliyu, A. M. Jabbi & S. Isyaku, ‘‘Synthesis, characterization and antimicrobial studies of schiff base derived from 4methyl-o-phenylenediamie and 2-hydroxnaphaldehyde and its metal (II) complexes’’, Journal of Science 2 (2020) 459. https://doi.org/10.33003/fjs-2020-0402-229.

[20] S. A. Khan, S. A. A. Nami, A. Shahnawaz, B. Abdul Kareem & N. Nishat, ‘‘Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II)’’, Microbial Pathogenesis 110 (2017) 414e425. http://dx.doi.org/10.1016/j.micpath.2017.07.008.

[21] I. E. Ottokere, U. F. Robert & K. K. Igwe, ‘‘Chelating and antibacterial potentials of benzylpenicillin and its Ni (II) complex’’, Communication in Physical Sciences 8 (2022) 138. https://journalcps.com/index.php/volumes/article/view/269.

[22] R. Rasool, S. Hasnain & N. Nishat, ‘‘Metal-based Schiff base polymers: preparation, spectral, thermal and their in vitro biological investigation’’, Designed Monomers and Polymers 17 (2014) 217. https://doi.org/10.1080/15685551.2013.840472.

[23] X. Ma, Q. Li, Y. Zhang, W. Wang, Y. Guo, & C. Zhang, ‘‘Facile synthesis of polymeric schiff base metal complex as electrode for high-performance supercapacitors’’, Journal of the Electrochemistry Soc. 167 (2020) 90405. https://doi.org/10.1149/1945-7111/ab9403.

[24] I. E. Ottokere, L. O. Okpara, K. C. Amadi, N. Ikpo, G. U. Okafor & F. C. Nwadire, ‘‘Synthesis, characterization and complexation of Cr (III) ion using chloroquine diphosphate drug’’, Journal of Chemical Society of Nigeria 44 (2019) 107. https://journals.chemsociety.org.ng/index.php/jcsn/article/view/254.

[25] B. C. Asogwa, O. M. Mac-kalunta, J. I. Iheanyichukwu, I. E. Ottokere & K. Nnochirionye, ‘‘Sonochemical synthesis, characterization, and AD-MET studies of Fe (II) and Cu (II) nano-sized complexes of trimethoprim’’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 2148. https://doi.org/10.46481/jnsps.2024.2148.

[26] S. J. Almehmadi, A. Alharbi, M. M. Abualnaja, K. Alkhamis, M. Al-hasani, S. H. Abdel-Hafez, R. Zaky & N. M. El-Metwaly, ‘‘Solvent free synthesis, characterization, DFT, cyclic voltammetry and biological assay of Cu (II), Hg (II) and UO2 (II) - Schiff base complexes’’, Arabian Journal of Chemistry 15 (2022) 103586. https://doi.org/10.1016/j.arabjc.2021.103586.

[27] S. Sarala, S. K. Geetha, S. Muthu & A. Irfan, ‘‘Theoretical investigation on influence of protic and aprotic solvents effect and structural (Monomer, Dimer), Van-der Waals and Hirshfeld surface analysis for clonidine molecule’’, Computational and Theoretical Chemistry 1204 (2021) 113397. https://doi.org/10.1016/j.comptc.2021.113397.

[28] E. P. Mukhokosi, S. Tenywa, N. L. Botha, S. Azizi, M. P. Scopela, M. Maaza, ‘‘Green synthesis of CuO nanoparticles from cucurbita maxima leaf extract; a platinum free counter electrode for dye sensitized solar cell’’, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2309. https://doi.org/10.46481/jnsps.2025.2309.

[29] A. Jabbi, H. Aliyu, S. Isyaku & A. Kabir, ‘‘Preparation, characterization and antimicrobial studies of Mn (ii) and Fe (ii) complexes with schiff base ligand derived from 2- aminophenol and 3-formyl-2-hydroxy-6-methoxyquinoline’’, Open Journal of Inorganic Chemistry 10 (2020) 15. https://doi.org/10.4236/ojic.2020.102003.

[30] W. W. Andualem, F. K. Sabir, E. T. Mohammed, H. H. Belay & B. A. Gonfa, ‘‘Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity’’, Journal of Nanotechnology 2020 (2020) 2932434. https://doi.org/10.1155/2020/2932434.

[31] W. A. Osunniran, J. A. Obaleye, A. C. Tella, Y. O. Ayipo, A. T. Bale & A. O. Rajee, ‘‘Toxicological assessment of Synthesized and Characterized transition metal (II) complexes of Eflornithine Hydrochloride Hydrate on Albino rats’’, Bulletin of Chemical Society of Ethiopia 34 (2020) 489. https://dx.doi.org/10.4314/bcse.v34i3.6.

[32] W. A. Osunniran, Y. O. Ayipo, A. O. Rajee, A. T. Bale, M. O. Bamigboye & J. A. Obaleye, ‘‘Heteroleptic Transition Metal Complexes of Eflornithine Hydrochloride Monohydrate: Synthesis, Characterization, in silico and in vitro Biological Studies’’, Journal of Turkish Chemical Society Section A. 9 (2022) 1309. https://doi.org/10.18596/jotcsa.1142442.

[33] B. H. Akpeji, B. Laric, U. A. Igbukud, G. O. Tesie, E. E. Elemikeb & P. O. Akusu, ‘‘Synthesis and characterization of MnO2 nanoparticles mediated by Raphia hookeri seed’’, Journal of the Nigerian Society of Physical Sciences. 6 (2024) 2203. https://doi.org/10.46481/jnsps.2024.2203.

[34] L. Kang, M. Zhang, Z. H. Liu & K. Ooi, ‘‘IR spectra of manganese oxides with either layered or tunnel structures’’, Spectrochim Acta A Mol Biomol Spectrosc 67 (2007) 864. https://doi.org/10.1016/j.saa.2006.09.001.

[35] M. Gowri, N. Latha & M. Rajan, ‘‘Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study’’, Bio-NanoScience 9 (2019) 545. https://doi.org/10.1007/s12668-019-00655-7.

[36] M. Abu-Dief & I. M. A. Mohamed, ‘‘A review on versatile applications of transition metal complexes incorporating Schiff bases’’, Beni-Suef Journal of Basic and Applied Sciences 2 (2015) 119. https://doi.org/10.1016/j.bjbas.2015.05.004.

[37] M. Y. Ali, ‘‘Review on preparation and description of some first series divalent transition metal complexes with novel schiff’s base ligands’’, Review of Catalysts 1 (2015) 14. https://ideas.repec.org/a/pkp/reveat/v2y20151i.p14-25id2603.html.

[38] A. S. Prakash, I. S. Raj, C. Allen & R. G. Gana, ‘‘Zr (IV) and Th (IV) complexes with schiff base ligands: synthesis, characterization, antimicrobial studies’’, International Reference Journal of Engineering and Science 6 (2017) 43. https://www.irjes.com/Papers/vol6-issue10/I61014353.pdf.

[39] A. F. Burlec, A. Corciova, M. Boev, D. Batir-Marin, C. Mircea, O. Cioanca, G. Danila, M. Danila, A. F. Bucur & M. Hancianu, ‘‘Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles’’, Pharmaceuticals 16 (2023) 1410. https://doi.org/10.3390/ph16101410.

[40] K. O. Eberendu, J. I. Iheanyichukwu, O. M. Mac-kalunta, C. I. Nwankwo, I. E. Ottokere & J. C. Nnaji, ‘‘Zn(II) and Fe(II) complexes of 2,4-dinitro-N-I(Z)-[(E)-3-(2-nitrophenyl)prop-2-enylidene]amino]aniline: synthesis, characterization and In Silico SARS-CoV-2 inhibition studies’’, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2326. https://doi.org/10.46481/jnsps.2025.2326.

[41] B. T. Iorhuna, T. T. Awuhe, I. C. Azuaga, E. Isaac, F. Shuaibu, B. Yohann, ‘‘Synthesis, characterization and antimicrobial activities of copper-tea leaves (camellia sinensis) extract nanoparticles’’, Journal of the Nigerian Society of Physical Sciences 4 (2022) 835. https://doi.org/10.46481/jnsps.2022.835.

[42] R. M. Humphries, J. Ambler, S. L. Mitchell, M. Castanheira, T. Dingle, J. A. Hindler, L. Koeth, & K. Sei, ‘‘CLSI methods development and standardization working group best practices for evaluation of antimicro-bial susceptibility tests’’, Journal of clinical microbiology 56 (2018) 10. https://doi.org/10.1128/jcm.01934-17.

[43] N. Nishat, S. A. Khan, R. Rasool & S. Parveen, ‘‘Synthesis and characterization of thermally stable and biologically active metal-based schiff base polymer’’, Journal of Inorganic and Organometallic Polymers and Materials 22 (2012) 455e463. https://doi.org/10.1007/s10904-011-9584-5.

[44] A. H. Sadi, M. I. Idris & S. S. Bashir, ‘‘Synthesis, characterization and antimicrobial studies of Ru (ii) complexes with schiff co-ligand derived from 5,6- diaminophenanthroline and benzene-1,4-dicarbaldehyde’’, Bayero Journal of Pure and Applied Sciences 10 (2017) 1. http://dx.doi.org/10.4314/bajopas.v10i1.1S.

[45] P. J. Saritha, & P. Metilda, ‘‘Synthesis, spectroscopic characterization and larvicidal activity of some transition metal complexes of schiff base derived from curcumin and 2-aminophenol [Mn (II), Co (II), Ni (II), Cu (II) and Zn (II)]’’, International Journal of Advanced Science Research and Management 4 (2019) 340. https://ijasrm.com/wp-content/uploads/2019/04/IJASRM_V4S4_1394_340_350.pdf.

[46] A. Selvi & D. Nartop, ‘‘Novel polymer anchored Cr (III) schiff base complexes: synthesis, characterisation and antimicrobial properties’’, Journal of Spectrochimis Acta A: Molecular and Bimolecular Spectroscopy 95 (2012) 165. http://dx.doi.org/10.1016/j.saa.2012.04.079.

[47] M. T. H. Tarafder, M. A. Ali, D. J. Wee, K. Azahiri, S. Silong & K. A. Crouse, ‘‘Synthesis and biological properties of complexes of tridentate ONS Schiff base’’, Transition Metal Chemistry 25 (2000) 456. https://doi.org/10.1023/A:1007062409973.

Published

2025-05-17

How to Cite

One-pot synthesis and antimicrobial efficacy of polymeric schiff base metal complexes derived from o-phenylenediamine and terephthalaldehyde. (2025). Recent Advances in Natural Sciences, 3(1), 199. https://doi.org/10.61298/rans.2025.3.1.199

How to Cite

One-pot synthesis and antimicrobial efficacy of polymeric schiff base metal complexes derived from o-phenylenediamine and terephthalaldehyde. (2025). Recent Advances in Natural Sciences, 3(1), 199. https://doi.org/10.61298/rans.2025.3.1.199