Wastewater treatment, greenhouse gas emissions, and our environment
Authors
- Ifeoma Anne Anazonwu Department of Chemistry, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
- Mochamad Zakki Fahmi Department of Chemistry, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
Keywords:
Wastewater treatment, Greenhouse gases, Mitigation, Carbon dioxide, Methane, Nitrous oxide, Climate change, GHG monitoringAbstract
The reclamation and reuse of wastewater is a vital process that helps to address water pollution and scarcity problems. Nevertheless, wastewater treatment is also a significant source of greenhouse gases (methane, carbon dioxide and nitrous oxide). Methane, the most significant greenhouse gas is majorly emitted during anaerobic process, carbon dioxide from aerobic processes while nitrous oxide is associated with nitrification and denitrification processes. The increase in the level of these greenhouse gases is the main cause of global warming and climate change and has resulted in change in weather patterns, severe weather events, habitat loss and loss of wildlife. The adjusting of operating conditions, conversion of methane to fuel for energy production, carbon dioxide capturing are some highlighted methods to minimize the release of these heat-trapping gases from wastewater treatment plants. Also, methods of monitoring these GHG as well as the direct and indirect effects of climate change on the management of wastewater are also discussed in this review.
Author Biography
Mochamad Zakki Fahmi, Department of Chemistry, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
M. Qadir, P. Drechsel, B. Jiménez Cisneros, Y. Kim, A. Pramanik, P. Mehta & O. Olaniyan, ‘‘Global and regional potential of wastewater as a water, nutrient and energy source’’, Natural Resources Forum 44 (2020) 40. https://doi.org/10.1111/1477-8947.12187.
United Nations, ‘‘Climate change: CO2 and methane in our atmosphere reach record levels’’, Climate and Environment. [Online]. https://news.un.org/en/story/2022/10/1129887.
E. I. Valenzuela, J. A. Contreras & G. Quijano, ‘‘Fast development of microbial cultures for the anaerobic oxidation of CH4 coupled to denitrification employing widely available inocula’’, Biochemical Engineering Journal 184 (2022) 108492. https://doi.org/10.1016/j.bej.2022.108492.
A. Tumendelger, Z. Alshboul & A. Lorke, ‘‘Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany’’, PLoS One 14 (2019) e0209763. https://doi.org/10.1371/journal.pone.0209763.
USEPA, ‘‘Importance of methane’’. [Online]. https://www.epa.gov/gmi/importance-methane.
J. Orlich, ‘‘Methane emissions from landfills sites and wastewater lagoons’’, International Workshop on Methane Emissions from Natural Gas Systems, Coal Mining and Waste Management Systems, Japan Environment Agency and the US EPA, Pennsylvania, USA, 1990, pp. 465–471.
USEPA, ‘‘International anthropogenic methane emission: estimates for 1990’’, Washington DC, 1994. [Online]. https://nepis.epa.gov/EPA/html/DLwait.html
M. El-Fadel & M. Massoud, ‘‘Methane emissions from wastewater management’’, Environmental Pollution 114 (2001) 177. https://doi.org/10.1016/S0269-7491(00)00222-0.
J. P. Bassin, F. D. Castro, R. R. Valério, E. P. Santiago, F. R. Lemos & I. D. Bassin, ‘‘The impact of wastewater treatment plants on global climate change’’, in Water Conservation in the Era of Global Climate Change, B. Thokchom, P. Qiu, P. Singh & P. K. Iyer (Eds.), Elsevier, 2021, pp. 367–410. https://doi.org/10.1016/B978-0-12-820200-5.00001-4.
A. R. Ravishankara, J. S. Daniel & R. W. Portmann, ‘‘Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century’’, Science 326 (2009) 123. https://doi.org/10.1126/science.1176985.
H. Tian, R. Xu, J. G. Canadell, R. L. Thompson, W. Winiwarter, P. Suntharalingam, E. A. Davidson, P. Ciais, R. B. Jackson, G. Janssens-Maenhout, M. J. Prather, P. Regnier, N. Pan, S. Pan, G. P. Peters, H. Shi, F. N. Tubiello, S. Zaehle, F. Zhou & Y. Yao, ‘‘A comprehensive quantification of global nitrous oxide sources and sinks’’, Nature 586 (2020) 248. https://doi.org/10.1038/s41586-020-2780-0.
IPCC, ‘‘Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’’, R. K. Pachauri and A. Reisinger (Eds.), Geneva, Switzerland, 2007, pp. 727–728. https://doi.org/10.1038/446727a.
M. A. Onu, O. O. Ayeleru, B. Oboirien & P. A. Olubambi, ‘‘Challenges of wastewater generation and management in sub-Saharan Africa: A Review’’, Environmental Challenges, 11 (2023) 100686. https://doi.org/10.1016/j.envc.2023.100686.
S. Singh & S. Tiwari, ‘‘Climate change, water and wastewater treatment: interrelationship and consequences’’, in Water Conservation, Recycling and Reuse: Issues and Challenges, R. P. Singh, A. S. Kolok & S. L. Bartelt-Hunt (Eds.), Springer Nature, Singapore, 2019, pp. 1–276. https://doi.org/10.1007/978-981-13-3179-4.
D. Wang, W. Ye, G. Wu, R. Li, Y. Guan, W. Zhang, J. Wang, Y. Shan & K. Hubacek, ‘‘Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019’’, Scientific Data 9 (2022) 1. https://doi.org/10.1038/s41597-022-01439-7.
F. Abdulla & S. Farahat, ‘‘Impact of climate change on the performance of wastewater treatment plant: Case study Central Irbid WWTP (Jordan)’’, Procedia Manufacturing 44 (2020) 205. https://doi.org/10.1016/j.promfg.2020.02.223.
T. A. Larsen, ‘‘CO2-neutral wastewater treatment plants or robust, climatefriendly wastewater management? A systems perspective’’, Water Research 87 (2015) 513. https://doi.org/10.1016/j.watres.2015.06.006.
A. Zouboulis & A. Tolkou, ‘‘Effect of climate change in wastewater treatment plants: reviewing the problems and solutions’’, in Managing Water Resources Under Climate Uncertainty, S. Shrestha, A. K. Anal, P. A. Salam & M. Van Der Valk (Eds.), Springer International Publishing, Switzerland, 2015, pp. 1–24. https://doi.org/10.1007/978-3-319-10467-6.
United Nations, ‘‘Vast amounts of valuable energy, nutrients, water lost in world’s fast-rising wastewater streams’’ [Online]. https://mailchi.mp/5d8677786625/unu-inweh-highlights-april-685680.
M. Khalkhali & W. Mo, ‘‘The energy implication of climate change on urban wastewater systems’’, Journal of Cleaner Production 27 (2020) 121905. https://doi.org/10.1016/j.jclepro.2020.121905.
M. Weißbach, F. R. Goßler, J. E. Drewes & K. Koch, ‘‘Separation of nitrous oxide from aqueous solutions applying a micro porous hollow fiber membrane contactor for energy recovery’’, Separation and Purification Technology 195 (2018) 271. https://doi.org/10.1016/j.seppur.2017.12.016.
M. Ramírez-Melgarejo, S. Gassó-Domingo & L. P. Güereca, ‘‘Evaluation of N2O emissions in wastewater treatment systems: a comparative analysis of emission between case studies of developed and developing countries’’, Water Air & Soil Pollution 230 (2019) 42.https://doi.org/10.1007/s11270-019-4086-0.
M. Ramírez-Melgarejo, L. P. Güereca, S. Gassó-Domingo, C. D. Salgado & A. D. Reyes-Figueroa, ‘‘Eco-efficiency evaluation in wastewater treatment plants considering greenhouse gas emissions through the data envelopment analysis- tolerance model’’, Environmental Monitoring and Assessment 193 (2021) 301. https://doi.org/10.1007/s10661-021-09063-5.
S. Wang, S. Han, Z. Qu, L. Wu, J. Yu, Y. Lou, H. Yu, H. Shentu, S. Huang & J. Wei, ‘‘Greenhouse Gas Emissions Evaluations of Wastewater Treatment Plant—A Case Study of Jiaxing, China’’, 5th International Symposium on Water Pollution and Treatment, Bangkok, Thailand, 2023, pp. 73–81. https://doi.org/10.1007/978-981-99-3737-0_8.
OECD, ‘‘Environmental outlook to 2050, The consequence of inaction, Key facts & figures’’, [Online]. https://doi.org/10.1787/9789264122246-en.
United Nations, ‘‘Sustainable Development Goals: Clean Water and Sanitation’’, [Online]. https://www.un.org/sustainabledevelopment/water-and-sanitation.
V. Novotny, ‘‘Sustainable urban water management, in Water and Urban Development Paradigms: Towards an Integration of Engineering, Design and Management Approaches’’, International Urban Water Conference, Leuven, Belgium, 2009, pp. 19–31. https://doi.org/10.1201/9780203884102.pt1.
R. Gondo & O. D. Kolawole, ‘‘Sustainable Water Resources Management: Issues and Principles of Water Governance in the Okavango Delta, Botswana’’, International Journal of Rural Management 15 (2019) 198. https://doi.org/10.1177/0973005219865369.
S. B. Megdal, S. Eden & E. Shamir, ‘‘Water governance, stakeholder engagement, and sustainable water resources management’’, Water 9 (2017) 190. https://doi.org/10.3390/w9030190.
T. A. Larsen & W. Gujer, ‘‘The concept of sustainable urban water management’’, Water Science and Technology, 35 (1997) 3. https://doi.org/10.1016/S0273-1223(97)00179-0.
United Nations-Water, ‘‘Water quality-Policy brief’’, [Online]. https://www.unwater.org/sites/default/files/app/uploads/2017/05/waterquality_policybrief.pdf.
K. K. Kesari, R. Soni, Q. Jamal, P. Tripathi, J. Lal, N. Jha, M. Siddiqui, P. Kumar, V. Tripathi & J. Ruokolainen, ‘‘Wastewater treatment and reuse: a review of its applications and health implications’’, Water, Air, and Soil Pollution 232 (2021) 208. https://doi.org/10.1007/s11270-021-05154-8.
A. J. Clemmens, R. G. Allen & C. M. Burt, ‘‘Technical concepts related to conservation of irrigation and rainwater in agricultural systems’’, Water Resource Research 44 (2018) W00E03. https://doi.org/10.1029/2007WR006095.
A. Y. Hoekstra & M. M. Mekonnen, ‘‘The water footprint of humanity’’, Proceedings of the National Academy of Sciences 109 (2012) 3232. https://doi.org/10.1073/pnas.1109936109/-/DCSupplemental.
A. Ambulkar & J. A. Nathanson, ‘‘Wastewater treatment’’, Encyclopedia Britannica, [Online]. https://www.britannica.com/technology/wastewater-treatment.
G. Crini & E. Lichtfouse, ‘‘Wastewater treatment: An overview’’, in Green Adsorbent for Pollutant Removal, G. Crini, E. Lichtfouse (Eds.), Springer International Publishing, 2018, pp. 1–21. https://doi.org/10.1007/978-3-319-92111-2_1.
G. Crini & E. Lichtfouse, ‘‘Advantages and disadvantages of techniques used for wastewater treatment’’, Environmental Chemistry Letters 17 (2019) 145. https://doi.org/10.1007/s10311-018-0785-9.
C. Sweetapple, G. Fu & D. Butler, ‘‘Identifying sensitive sources and key controlhandlesforthereductionofgreenhousegasemissionsfromwastewater treatment’’, Water Research 62 (2014) 249. https://doi.org/10.1016/j.watres.2014.06.002.
M. Bani Shahabadi, L. Yerushalmi & F. Haghighat, ‘‘Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants’’, Water Research 43 (2009) 2679. https://doi.org/10.1016/j.watres.2009.02.040.
G. Mannina, G. Ekama, D. Caniani, A. Cosenza, G. Esposito, R. Gori, M. Garrido- Baserba, D. Rosso & G. Olsson, ‘‘Greenhouse gases from wastewater treatment - A review of modelling tools’’, Science of the Total Environment 254 (2016) 551. https://doi.org/10.1016/j.scitotenv.2016.01.163.
L. Yerushalmi and F. Haghighat, ‘‘Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants’’, Water Science and Technology 67 (2013) 1159. https://doi.org/10.2166/wst.2013.681.
World Meteorological Organization, ‘‘Greenhouse Gas concentrations hit record high again’’, [Online]. https://www.rural21.com/english/news/detail/article/greenhouse-gas-concentrations-hit-record-high.html.
L. Y. Tseng, A. Robinson, X. Zhang, X. Xu, J. Southon, A. Hamilton, R. Sobhani, M. Stenstrom & D. Rosso, ‘‘Identification of Preferential Paths of Fossil Carbon within Water Resource Recovery Facilities via Radiocarbon Analysis’’, Environmental Science and Technology 50 (2016) 12166. https://doi.org/10.1021/acs.est.6b02731.
USEPA, ‘‘Inventory of U.S. Greenhouse Gas Emissions and Sinks: 19902021’’, [Online]. https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Chapter-2-Trends.pdf.
V. Parravicini, P. H. Nielsen, D. Thornberg & A. Pistocchi, ‘‘Evaluation of greenhouse gas emissions from the European urban wastewater sector, and options for their reduction’’, Science of the Total Environment 838 (2022) 156322. https://doi.org/10.1016/j.scitotenv.2022.156322.
I. Sharawat, R. Dahiya & R. P. Dahiya, ‘‘Analysis of a wastewater treatment plant for energy consumption and greenhouse gas emissions’’, International Journal of Environmental Science and Technology 18 (2021) 871. https://doi.org/10.1007/s13762-020-02893-9.
M. Yang, M. Peng, D. Wu, H. Feng, Y. Wang, Y. Lv, F. Sun, S. Sharma, Y. Che & K. Yang, ‘‘Greenhouse gas emissions from wastewater treatment plants in China: Historical emissions and future mitigation potentials’’, Resources, Conservation and Recycling 190 (2023) 106794. https://doi.org/10.1016/j.resconrec.2022.106794.
A. Springer, ‘‘What does global warming mean for my wastewater treatment plant?’’, WSP, New Zealand Limited. [Online]. https://www.wsp.com/-/media/insights/new-zealand/.
E. J. Dlugokencky, E. G. Nisbet, R. Fisher & D. Lowry, ‘‘Global atmospheric methane: Budget, changes and dangers’’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (2011) 2058. https://doi.org/10.1098/rsta.2010.0341.
D. J. Hofmann, J. H Butler, E. J. Dlugokencky, J. W. Elkins, K. Masarie, S. A. Montzka & P. Tans, ‘‘The role of carbon dioxide in climate forcing from 1979 to 2004: Introduction of the Annual Greenhouse Gas Index’’, Tellus, Series B: Chemical and Physical Meteorology 58 (2006) 614. https://doi.org/10.1111/j.1600-0889.2006.00201.x.
J. E. Hansen & M. Sato, ‘‘Trends of measured climate forcing agents’’, National Academy of Sciences 98 (2001) 14778. https://doi.org/10.1073pnas.261553698.
I. B. Ocko, T. Sun, D. Shindell, M. Oppenheimer, A. N. Hristov, S. W. Pacala, D. L. Mauzerall, Y. Xu & S. P. Hamburg, ‘‘Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming’’, Environmental Research Letters 16 (2021) 054042. https://doi.org/10.1088/1748-9326/abf9c8.
C. Song, J. J. Zhu, J. L. Willis, D. P. Moore, M. A. Zondlo & Z. J. Ren, ‘‘Methane emissions from municipal wastewater collection and treatment systems’’, Environmental Science and Technology 57 (2023) 2248. https://doi.org/10.1021/acs.est.2c04388.
K. Oshita, T. Okumura, M. Takaoka, T. Fujimori, L. Appels & R. Dewil, ‘‘Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities’’, Bioresource Technology 171 (2014) 175. https://doi.org/10.1016/j.biortech.2014.08.081.
M. R. J. Daelman, E. M. van Voorthuizen, U. G. J. M. van Dongen, E. I. P. Volcke & M. C. M. van Loosdrecht, ‘‘Methane emission during municipal wastewater treatment’’, Water Research 46 (2012) 3657. https://doi.org/10.1016/j.watres.2012.04.024.
J. L. Campos, D. Valenzuela-Heredia, A. Pedrouso, A. Val Del Río, M. Belmonte & A. Mosquera-Corral, ‘‘Greenhouse gases emissions from wastewater treatment plants: minimization, treatment, and prevention’’, Journal of Chemistry 2016 (2016) 3796352. http://dx.doi.org/10.1155/2016/3796352.
United Nations Environment Programme and Climate and Clean Air Coalition, ‘‘Global methane assessment: benefits and costs of mitigating methane emissions’’. [Online]. https://www.ccacoalition.org/resources/global-methane-assessment-full-report.
H. Yoshida, J. Mønster, and C. Scheutz, ‘‘Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant’’, Water Research 61 (2014) 108. https://doi.org/10.1016/j.watres.2014.05.014.
W. Gujer and A. J. B. Zehnder, ‘‘Conversion processes in anaerobic digestion’’, Water Science & Technology 15 (1983) 127. https://iwaponline.com/wst/article-pdf/15/8-9/127/95639/127.pdf.
S. Wacławek, K. Grübel, D. Silvestri, V. V. T. Padil, M. Wacławek, M. Černík, R. S. Varma, ‘‘Disintegration of wastewater activated sludge (WAS) for improved biogas production: a mini review’’, Energies 12 (2019) 21. https://doi.org/10.3390/en12010021.
M. Cui, A. Ma, H. Qi, X. Zhuang & G. Zhuang, ‘‘Anaerobic oxidation of methane: an active microbial process’’, Microbiologyopen 4 (2014) 1. https://doi.org/10.1002/mbo3.232.
J. A. Contreras, E. I. Valenzuela & G. Quijano, ‘‘Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-theart and challenges’’, Journal of Environmental Management319 (2022) 115671. https://doi.org/10.1016/j.jenvman.2022.115671.
S. Wang, Q. Liu, J. Li and Z. Wang, ‘‘Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methaneoxidizing bacteria for high value-added chemicals production and wastewater treatment’’, Water Research 198 (2021) 117122. https://doi.org/10.1016/j.watres.2021.117122.
O. Modin, K. Fukushi, F. Nakajima & K. Yamamoto, ‘‘Aerobic methane oxidation coupled to denitrification: Kinetics and effect of oxygen supply’’, Journal of Environmental Engineering 136 (2010) 211. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000134.
X. Zhou, G. Wang, D. Ge & Z. Yin, ‘‘Development of aerobic methane oxidation, denitrification coupled to methanogenesis (AMODM) in a microaerophilicexpandedgranularsludgeblanketbiofilmreactor’’, Journalof Environmental Management 275 (2020) 111280. https://doi.org/10.1016/j.jenvman.2020.111280.
F. Sun, W. Dong, M. Shao, X. Lv, J. Li, L. Peng & H. Wang, ‘‘Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation’’, Bioresource Technology 145 (2013) 2. https://doi.org/10.1016/j.biortech.2013.03.115.
J. Zhu, Q. Wang, M. Yuan, G. Y. A. Tan, F. Sun, C. Wang, W. Wu & P. H. Lee, ‘‘Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review’’, Water Research 90 2016 203. https://doi.org/10.1016/j.watres.2015.12.020.
A. K. Molina-Macías, Y. A. Londono & G. A. Penuela, ‘‘Denitrifying anaerobic methane oxidation and its applications for wastewater treatment’’, International Journal of Environmental Science and Technology 20 (2023) 2209. https://doi.org/10.1007/s13762-022-04155-2.
O. Modin, K. Fukushi & K. Yamamoto, ‘‘Denitrification with methane as external carbon source’’, Water Research 41 (2007) 2726. https://doi.org/10.1016/j.watres.2007.02.053.
M. Kumar, G. Rattan & R. Prasad, ‘‘Catalytic abatement of methane emission from CNG vehicles: an overview’’, Canadian Chemical Transactions (2015) 0227. https://doi.org/10.13179/canchemtrans.2015.03.04.0227.
IPCC, ‘‘Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental Panel on Climate Change’’, Cambridge, United Kingdom and New York, USA, 2014. https://www.ipcc.ch/report/ar5/wg3/.
K. Jaromin-Gleń, R. Babko, T. Kuzmina, Y. Danko, G. Łagód, C. Polakowski, J. Szulżyk-Cieplak and A. Bieganowski, ‘‘Contribution of prokaryotes and eukaryotes to CO2 emissions in the wastewater treatment process’’, PeerJ 8 (2020) e9325. https://doi.org/10.7717/peerj.9325.
H. D. Monteith, H. R. Sahely, H. L. MacLean & D. M. Bagley, ‘‘A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants’’, Water Environment Research 77 (2005) 390. https://doi.org/10.1002/j.1554-7531.2005.tb00298.x.
Y. Law, G. E. Jacobsen, A. M. Smith, Z. Yuan & P. Lant, ‘‘Fossil organic carbon in wastewater and its fate in treatment plants’’ Water Research 47 (2013) 5270. https://doi.org/10.1016/j.watres.2013.06.002.
D. R. Griffith, R. T. Barnes & P. A. Raymond, ‘‘Inputs of Fossil Carbon from Wastewater Treatment Plants to U.S. Rivers and Oceans’’, Environmental Science & Technology 43 (2009) 5647. https://doi.org/10.1021/es9004043.
K. Qian, A. Kumar, H. Zhang, D. Bellmer & R. Huhnke, ‘‘Recent advances in utilization of biochar’’, Renewable and Sustainable Energy Reviews 42 (2015) 1055. https://doi.org/10.1016/j.rser.2014.10.074.
J. Oladejo, K. Shi, X. Luo, G. Yang & T. Wu, ‘‘A review of sludge-toenergy recovery methods’’, Energies 12 (2019) 1. https://doi.org/10.3390/en12010060.
J. Wang & S. Wang, ‘‘Preparation, modification and environmental application of biochar: A review’’, Journal of Cleaner Production bf227 (2019) 1002. https://doi.org/10.1016/j.jclepro.2019.04.282.
C. Li, X. Wang, G. Zhang, J. Li, Z. Li, G. Yu & Y. Wang, ‘‘A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification’’, Bioresource Technology 254 (2018) 193. https://doi.org/10.1016/j.biortech.2018.01.045.
E. Domscheit, ‘‘Near-nature wastewater treatment methods’’, in Water and wastewater management: Global problems and measures, B. Müfit and A. Haarstrick (Eds.), Cham: Springer International Publishing, 2022, pp. 115–128. https://doi.org/10.1007/978-3-030-95288-4_10.
J. J. M. de Klein & A. K. van der Werf, ‘‘Balancing carbon sequestration and GHG emissions in a constructed wetland’’, Ecological Engineering 66 (2014) 36. https://doi.org/10.1016/j.ecoleng.2013.04.060.
J. Sadhukhan, J. Lloyd, K. Scott, G. Premier, E. Yu, T. Curtis & I. Head, ‘‘A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2’’, Renewable & Sustainable Energy Reviews 56 (2016) 116. https://doi.org/10.1016/J.RSER.2015.11.015.
A. Kadier, P. Jain, B. Lai, M. Kalil, S. Kondaveeti, K. Alabbosh, I. AbuReesh & G. Mohanakrishna, ‘‘Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment’’, Biofuel Research Journal 7 (2020) 1128. https://doi.org/10.18331/brj2020.7.1.5.
J.-H. Tian, R. Lacroix, E. D.-L. Quéméner, C. Bureau, C. Midoux & T. Bouchez, ‘‘Upscaling of microbial electrolysis cell integrating microbial electrosynthesis: Insights, challenges and perspectives’’, bioRxiv (2019) 609909. https://doi.org/10.1101/609909.
L. Lu, J. S. Guest, C. A. Peters, X. Zhu, G. H. Rau & Z. J. Ren, ‘‘Wastewater treatment for carbon capture and utilization’’, Nature Sustainability 1 (2018) 750. https://doi.org/10.1038/s41893-018-0187-9.
Z. Huang, D. Jiang, L. Lu & Z. J. Ren, ‘‘Ambient CO2 capture and storage in bioelectrochemically mediated wastewater treatment’’, Bioresource Technology 215 (2016) 380. https://doi.org/10.1016/j.biortech.2016.03.084.
C. Schreiber, D. Behrendt, G. Huber, C. Pfaff, J. Widzgowski, B. Ackermann, A. Müller, V. Zachleder, S. Moudříková, P. Mojzeš, U. Schurr, J. Grobbelaar & L. Nedbal, ‘‘Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany’’, Bioresource Technology 234 (2017) 140. https://doi.org/10.1016/j.biortech.2017.03.028.
J. Singh & D. W. Dhar, ‘‘Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art’’, Frontiers in Marine Science 6 (2019) 1. https://doi.org/10.3389/fmars.2019.00029.
X. Zhang, Z. Lei, S. Ge, B. Ji & B. Zhang, ‘Editorial: Algae and microalgae- bacteria based technology for sustainable wastewater treatment’, Frontiers in Microbiology 14 (2023) 01. https://doi.org/10.3389/fmicb.2023.1263955.
K. Rabaey, P. Clauwaert, P. Aelterman & W. Verstraete, ‘‘Tubular microbial fuel cells for efficient electricity generation’’, Environmental Science & Technology 39 (2005) 8077. https://doi.org/10.1021/es050986i.
L. Lu, Z. Huang, G. H. Rau & Z. J. Ren, ‘‘Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment’’, Environmental Science & Technology 49 (2015) 8193. https://doi.org/10.1021/acs.est.5b00875.
M. Zhou, H. He, T. Jin & H. Wang, ‘‘Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris’’, Journal of Power Sources 214 (2012) 216. https://doi.org/10.1016/j.jpowsour.2012.04.043.
X. Dong, D. Pang, G. Luo & X. Zhu, ‘‘Microbial Water Electrolysis Cells for Efficient Wastewater Treatment and H2 Production’’, ACS Sustain Chem Eng 12 (2024) 4212. https://doi.org/10.1021/acssuschemeng.3c07953.
R. R. Pahunang, A. Buonerba, V. Senatore, G. Oliva, M. Ouda, T. Zarra, R. Muñoz, S. Puig, F. Ballesteros, C. Li, S. Hasan, V. Belgiorno & V. Naddeo, ‘‘Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy’’, Science of the Total Environment 792 (2021) 148479. https://doi.org/10.1016/j.scitotenv.2021.148479.
International Energy Agency, ‘‘Tracking Clean Energy Progress 2023’’, [Online]. https://www.iea.org/reports/tracking-clean-energy-progress-2023.
C. Hiar, ‘‘U.S. Hits Carbon Tech Milestone with First Direct-Air Capture Facility’’, Scientific American. [Online]. https://www.scientificamerican.com/article/u-s-hits-carbon-tech-milestone-with-first-direct-air-capture-facility/.
S. J. Milani & G. Nabi Bidhendi, ‘‘Biogas and photovoltaic solar energy as renewable energy in wastewater treatment plants: A focus on energy recovery and greenhouse gas emission mitigation’’, Water Science and Engineering 17 (2024) 291. https://doi.org/10.1016/j.wse.2023.11.003.
A. Alp, Ü. B. Filik & E. E. Gerek, ‘‘Renewable Energy Usage in Wastewater Treatment Plants: A Case Study’’, International Symposium on Energy Management and Sustainability, Cham: Springer International Publishing, 2023, pp. 331–339. https://www.springerprofessional.de/en/renewable-energy-usage-in-wastewater-treatment-plants-a-case-stu/25569586.
P. E. Campana, M. Mainardis, A. Moretti & M. Cottes, ‘‘100% renewable wastewater treatment plants: Techno-economic assessment using a modelling and optimization approach’’, Energy Conversion & Management 239 (2021) 114214. https://doi.org/10.1016/j.enconman.2021.114214.
IPCC, ‘‘Climate Change 2013: The Physical Science Basis’’, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Cambridge, United Kingdom and New York, USA, 2013, pp. 1–14. https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf.
IPCC, ‘‘Climate Change 2021: The Physical Science Basis’’, in Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.), Cambridge, United Kingdom and New York, USA, 2021. https://www.ipcc.ch/report/ar6/wg1/.
USEPA, ‘‘Overview of Greenhouse Gases’’, Greenhouse Gas Emissions, [Online]. https://www.epa.gov/ghgemissions/overview-greenhouse-gases.
USEPA, ‘‘Inventory of U.S greenhouse gas emissions and sinks: 1990-2021’’, Greenhouse Gas Emissions, [Online]. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.
L. Kemmou and E. Amanatidou, ‘‘Factors affecting nitrous oxide emissions from activated sludge wastewater treatment plants—A review’’, Resources 12 (2023) 114. https://doi.org/10.3390/resources12100114.
P. Czepiel, P. Crill & R. Harriss, ‘‘Nitrous oxide emissions from municipal wastewater treatment’’, Environmental Science & Technology 29 (1995) 2352. https://doi.org/10.1021/es00009a030.
P. Wunderlin, J. Mohn, A. Joss, L. Emmenegger & H. Siegrist, ‘‘Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions’’, Water Research 46 (2012) 1027. https://doi.org/10.1016/j.watres.2011.11.080.
Y. Law, L. Ye, Y. Pan & Z. Yuan, ‘‘Nitrous oxide emissions from wastewater treatment processes’’, Philosophical Transactions of the Royal Society B: Biological Sciences 367 (2012) 1265. https://doi.org/10.1098/rstb.2011.0317.
F. Schreiber, P. Wunderlin, K. M. Udert & G. F. Wells, ‘‘Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies’’, Frontiers in Microbiology 3, (2012) 372. https://doi.org/10.3389/fmicb.2012.00372.
M. J. Kampschreur, R. Kleerebezem, W. W. J. M. de Vet & M. C. M. van Loosdrecht, ‘‘Reduced iron induced nitric oxide and nitrous oxide emission’’, Water Research 45 (2011) 5945. https://doi.org/10.1016/j.watres.2011.08.056.
M. J. Kampschreur, H. Temmink, R. Kleerebezem, M. S. M. Jetten & M. C. M. van Loosdrecht, ‘‘Nitrous oxide emission during wastewater treatment’’, Water Research 43 (2009) 4093. https://doi.org/10.1016/j.watres.2009.03.001.
Q. Yang, X. Liu, C. Peng, S. Wang, H. Sun & Y. Peng, ‘‘N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method’’, Environmental Science & Technology 43 (2009) 9400. https://doi.org/10.1021/es9019113.
H. Zheng, K. Hanaki & T. Matsuo, ‘‘Production of nitrous oxide gas during nitrification of wastewater’’, Water Science and Technology 30 (1994) 133. https://doi.org/10.2166/wst.1994.0260.
Y. Law, P. A. Lant & Z. Yuan, ‘‘The effect of pH on N2O production under aerobic conditions in a partial nitritation system’’, Water Research 45 (2011) 5934. https://doi.org/10.1016/j.watres.2011.08.055.
K. Y. Park, Y. Inamori, M. Mizuochi & K. H. Ahn, ‘‘Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration’’, Journal of Bioscience and Bioengineering 90 (2000) 247. https://doi.org/10.1016/S1389-1723(00)80077-8.
C. Pellicer-Nàcher, S. Sun, S. Lackner, A. Terada, F. Schreiber, Q. Zhou & B. Smets, ‘‘Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration’’, Environmental Science and Technology 44 (2010) 7628. https://doi.org/10.1021/es1013467.
H. Duan, B.van den Akker, B. Thwaites, L. Peng, C. Herman, Y. Pan, B. Ni, S. Watt, Z. Yuan & L. Ye, ‘‘Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant’’, Water Research 185 (2020) 116196. https://doi.org/10.1016/j.watres.2020.116196.
E. Zaborowska, X. Lu & J. Makinia, ‘‘Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system’’, Water Research 162 (2019) 53. https://doi.org/10.1016/j.watres.2019.06.057.
S. K. Gupta, A. Sriwastav, F. A. Ansari, M. Nasr & A. K. Nema, ‘‘Phycoremediation: An eco-friendly algal technology for bioremediation and bioenergy production’’, in Phytoremediation Potential of Bioenergy Plants, K. Bauddh, B. Singh and J. Korstad, (Eds.), Springer, Singapore, 2017, pp. 431–456. https://doi.org/10.1007/978-981-10-3084-0_18.
M. Nasr, ‘‘Design considerations of algal systems for wastewater treatment’’, in Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment, S. K. Gupta & F. Bux, (Eds.), Springer Cham, 2019, pp. 411–426. https://doi.org/10.1007/978-3-030-13913-1_19.
G. Samiotis, K. Stamatakis & E. Amanatidou, ‘‘Assessment of Synechococcus elongatus PCC 7942 as an option for sustainable wastewater treatment’’, Water Science and Technology 84 (2021) 1438. https://doi.org/10.2166/wst.2021.319.
H. He, B. M. Wagner, A. L. Carlson, C. Yang & G. T. Daigger, ‘‘Recentprogressusingmembraneaeratedbiofilmreactorsforwastewatertreatment’’, Water Science and Technology 84 (2021) 2131. https://doi.org/10.2166/wst.2021.443.
Y. Ma, A. Piscedda, A. D. L. C. Veras, C. Domingo-Félez & B. F. Smets, ‘‘Intermittent aeration to regulate microbial activities in membrane-aerated biofilm reactors: Energy-efficient nitrogen removal and low nitrous oxide emission’’, Chemical Engineering Journal 433 (2022) 133630. https://doi.org/10.1016/j.cej.2021.133630.
J. Li, M. Feng, S. Zheng, W. Zhao, X. Xu & X. Yu, ‘‘The membrane aerated biofilm reactor for nitrogen removal of wastewater treatment: Principles, performances, and nitrous oxide emissions’’, Chemical Engineering Journal 460 (2023) 141693. https://doi.org/10.1016/j.cej.2023.141693.
N. Uri-Carreño, P. H. Nielsen, K. V Gernaey, C. Domingo-Félez and X. Flores- Alsina, ‘‘Nitrous oxide emissions from two full-scale membraneaerated biofilm reactors’’, Science of The Total Environment 908 (2024) 168030. https://doi.org/10.1016/j.scitotenv.2023.168030.
Climate Partner, ‘‘The complete guide to understanding scope 1, 2, and 3 emissions’’, [Online]. https://www.climatepartner.com/en/knowledge/insights/reducing-scope-emissions.
USEPA, ‘‘Greenhouse gas reporting program’’, [Online]. https://www.epa.gov/ghgreporting/ghgrp-waste.
E. Milne, H. Neufeldt, T. Rosenstock, M. Smalligan, C. Cerri, D. Malin, M. Easter, M. Bernoux, S. Ogle, F. Casarim, T. Pearson, D. Bird, E. Steglich, M. Ostwald, K. Denef & K. Paustian K, ‘‘Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts’’, Environmental Research Letters 8 (2013) 015019. https://doi.org/10.1088/1748-9326/8/1/015019.
CGAIR, ‘‘Estimating emissions’’, Research Program on Climate change, Agriculture and Food security. [Online]. https://agledx.ccafs.cgiar.org/estimating-emissions/methods.
L. Corominas, X. Flores-Alsina, L. Snip & P. Vanrolleghem, ‘‘Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants’’, Biotechnology and Bioengineering 109, (2012) 2854. https://doi.org/10.1002/bit.24544.
S. A. Ibrahim & S. H. Al Salim, ‘‘Estimation of carbon dioxide and methane emissions generated from industrial (WWT) plants’’, Journal of Purity, Utility Reaction and Environment 1 (2012) 396. https://www.researchgate.net/publication/318127320
D. Makutenien˙ e, A. J. Staugaitis, V. Makut˙ enas, D. Juoči˙ unien¯ e & Y. Bi-˙ lan, ‘‘An empirical investigation into greenhouse gas emissions and agricultural economic performance in Baltic countries: A non-linear framework’’, Agriculture 12 (2022) 1336. https://doi.org/10.3390/agriculture12091336.
L. J. Snip, Quantifying the greenhouse gas emissions of wastewater treatment plants, M. S thesis, Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands, 2009. https://edepot.wur.nl/138115.
M. A. Pratama & J. Setiarini, ‘‘Application of bridle model in estimating greenhouse gases emissions from three wastewater treatment plants in Fukushima Prefecture, Japan’’, IOP Conference Series: Earth & Environmental Science 724 (2021) 012061. https://doi.org/10.1088/1755-1315/724/1/012061.
T. Bridle, A. Shaw, S. Cooper, K. C. Yap, K. Third & M. Domurad, ‘‘Estimation of greenhouse gas emissions from wastewater treatment plants’’, in Proceedings of IWA World Water Congress, Vienna, Austria, 2008.
A. Muhammetoglu, A. Al-Omari, Z. Al-Houri, B. Topkaya, T. Tumbul & H. Muhammetoglu, ‘‘Assessment of energy performance and GHG emissions for the urban water cycle toward sustainability’’, Journal of Water and Climate Change 14 (2023) 223. https://doi.org/10.2166/wcc.2022.267.
Turkish Statistical Institute, ‘‘Turkish Greenhouse Inventory (19902021)- National Inventory Report for submission under the United Nations Framework Convention on Climate Change’’, [Online]. https://enerji.gov.tr/Media/Dizin/EVCED/tr/.
R. L. Bai, L. Jin, S. R. Sun, Y. Cheng & Y. Wei, ‘‘Quantification of greenhouse gas emission from wastewater treatment plants’’, Greenhouse Gases: Science and Technology 12 (2022) 587. https://doi.org/10.1002/ghg.2171.
A. Sharma, S. K. Bhardwaj, R. K. Aggarwal, R. Sharma & G. Agrawal, ‘‘Greenhouse gas emission potential of sewage treatment plants in Himachal Pradesh’’, Scientific Reports 13 (2023) 9675. https://doi.org/10.1038/s41598-023-36825-7.
R. Negi and M. K. Chandel, ‘‘Analysing water-energy-GHG nexus in a wastewater treatment plant of Mumbai Metropolitan Region, India’’, Environmental Research 196 (2021) 110931. https://doi.org/10.1016/j.envres.2021.110931.
E. Ranieri, G. D’Onghia, L. Lopopolo, P. Gikas, F. Ranieri, E. Gika, V. Spagnolo, A. C. Ranieri, ‘‘Evaluation of greenhouse gas emissions from aerobic and anaerobic wastewater treatment plants in Southeast of Italy’’, Journal of Environmental Management 337 (2023) 117767. https://doi.org/10.1016/j.jenvman.2023.117767.
G. Vijayan, R. Saravanane & T. Sundararajan, ‘‘Carbon Footprint Analyses of Wastewater Treatment Systems in Puducherry’’, Computational Water, Energy, and Environmental Engineering 06 (2017) 281. https://doi.org/10.4236/cweee.2017.63019.
Federal Republic of Nigeria,Federal Ministry of Environment, ‘‘National GHG Inventory Report 2000-2017’’, [Online]. https://unfccc.int/sites/default/files/resource/NIGERIA%20NIR1%20-%20First%20National%20GHG%20Inventory%20Report%20.pdf.
J. Samuelsson, A. Delre, S. Tumlin, S. Hadi, B. Offerle & C. Scheutz, ‘‘Optical technologies applied alongside on-site and remote approaches for climate gas emission quantification at a wastewater treatment plant’’, Water Research 131 (2018) 299. https://doi.org/10.1016/j.watres.2017.12.018.
Y. Bahi, A. Akhssas, M. Khamar, L. Bahi & H. Souidi, ‘‘Estimation of greenhouse gas (GHG) emissions from natural lagoon wastewater treatment plant: Case of AinTaoujdate-Morocco’’, E3S Web of Conferences 150 (2020) 01012. https://doi.org/10.1051/e3sconf/202015001012.
V. Naidoo & V. Moolman, ‘‘Excessive water restrictions impact on sewage treatment systems’’, Engineering News. [Online]. http://www.engineeringnews.co.za.
H. T. Olds, S. R. Corsi, D. K. Dila, K. M. Halmo, M. J. Bootsma & S. L. McLellan, ‘‘High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators’’, PLoS Med 15 (2018) e1002614. https://doi.org/10.1371/journal.pmed.1002614.
R. Neunteufel, R. Perfler, D. Schwarz, G. Bachner & B. Bednar-Friedl, ‘‘Water Supply and Sanitation’’, [Online]. https://ccca.ac.at/fileadmin/00_DokumenteHauptmenue/02_Klimawissen/FactSheets/7_water_en_v4_02112015.pdf.
J. Hughes, K. Cowper-Heays, E. Olesson, R. Bell & A. Stroombergen, ‘‘Impacts and implications of climate change on wastewater systems: A New Zealand perspective’’, Climate Risk Management 31 (2021) 100262. https://doi.org/10.1016/j.crm.2020.100262.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Ifeoma Anne Anazonwu, Mochamad Zakki Fahmi
This work is licensed under a Creative Commons Attribution 4.0 International License.