Reduced graphene oxide as the electron transport layer in perovskite solar cell: effect on the photovoltaic performance

Authors

  • Olumuyiwa Aderemi Oyekanmi Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria
  • S. Amole Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria
  • O. Akinrinola Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria
  • O. Adedokun Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria https://orcid.org/0000-0002-7947-8415
  • A. K. Dauda National Agency for Science and Engineering Infrastructure (NASENI), P.M.B 391, Abuja, FCT Nigeria
  • F. A. Ojeniyi Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria
  • A. O. Awodugba Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria

Keywords:

Reduced graphene oxide, Electron transport layer, Organic-inorganic halide perovskite, Perovskite solar cell, Photovoltaic parameters

Abstract

Perovskite solar cells (PSCs) have experienced an unprecedented advancement in the last decade owing to their astonishingly attractive properties, especially high-power conversion efficiency (PCE). In this study, the influence of reduced graphene oxide (rGO) on the photovoltaic performance of perovskite solar cells prepared via solution processes-based spin coating method was investigated. X-ray Diffraction (XRD), Fourier Transform Infrared spectrometer (FTIR), UV-visible spectrophotometry, Scanning Electron Microscopy (SEM) were used to study the properties of the prepared films. ITO/MAPbBr3/Gr and ITO/rGO/MAPbBr3/Gr planar PSCs were fabricated via spin coating method. ITO/rGO/MAPbBr3/Gr film achieved a power conversion efficiency (PCE) of 4.1 short circuit current (Jsc) of 7.5 mAcm−2 and fill factor (FF) of 61.2% compared to a PCE of 3.6%, Jsc of 6.6 mAcm−2 and FF of 58.0% achieved compared to PCE of 3.6%, %, Jsc of 6.6 mAcm−2 and FF of 58.0% achieved by ITO/MAPbBr3/Gr film. The PSC demonstrated the percentage enhancement value of 16.80% when modified with rGO. This study shows that rGO generated functional groups that act as conducting bridge in reducing the contact resistance between interface of the device.

Dimensions

T. H. Han, J. W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. D. Marco, S. J. Lee, S. H. Bae, Y. Yuan, H. M. Lee, Y. Huang & Y. Yang, ‘‘Perovskite polymer composite cross-linker approach for highly stable and efficient perovskite solar cells", Nature communications 10 (2019) 520. https://www.nature.com/articles/s41467-019-08455-z.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan & J. Huang, ‘‘Origin and elimination of photocurrentdent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells", Nature communications 5 (2014) 5784. https://www.nature.com/articles/ncomms6784.

S. Yang, J. Dai, Z. Yu, Y. Zhou, X. Xiao, X. C. Zeng&J. Huang, ‘‘Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells", Journal of the American Chemical Society 141 (2019) 5781. https://pubs.acs.org/doi/abs/10.1021/jacs.8b13091.

H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim & J. Y. Kim, ‘‘Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells", Nano Energy 7 (2014) 80. https://www.sciencedirect.com/science/article/abs/pii/S2211285514000731.

G. Tumen-Ulzii, C. Qui, P. Leyden, P. Wang, M. Auffray, T. Fujihara, T. Matsushima, J. W. Lee, S. J. Lee, Y. Yang & C. Aucachi, ‘‘Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells", Adv. Mater 32 (2020) 1905035. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201905035.

S. Yang, J. Dai, Z. Yu, Y. Zhou, X. Xiao, X. C. Zeng&J. Huang, ‘‘Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells", J. Am. Chem. Soc. 141 (2019) 5781. https://pubs.acs.org/doi/abs/10.1021/jacs.8b13091.

D. Son, J. Lee, X. Y. Choi, I. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim & N. Park, ‘‘Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells", Nat. Energy 1 (2016) 16081. https://www.nature.com/articles/nenergy201681.

Q. Wang, Q. Dang, T. Li, A. Gruverman & J. Hasung, ‘‘Thin insulating tunneling contact for efficient and water-resistant perovskite solar cells", Adv Mater 28 (2024) 6734. https://www.osti.gov/biblio/1342746.

M. U. Samuel, M. Y. Onimisi, J. A. Owolabi, D. Eli & E. O. Mary, ‘‘The enhanced photovoltaic performance of perovskite solar cell using carbon nanotubes as hole transport material", The Proceedings of the Nigerian Academy of Science 13 (2020) 148. https://nasjournal.org.ng/site/index.php/pnas/article/view/320.

F. Gao., X. Zhang, Y. Zhao & J. You, ‘‘Recent progresses on defect passivation towards efficient perovskite solar cells", Adv. Energy Mater 10 (2019) 1902650. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201902650.

S. Amole, O. Adedokun, O. Akinrinola, O. A. Oyekanmi, F. A. Ojeniyi, A. K. Dauda & A. O. Awodugba, ‘‘Influence of post thermal treatment on characteristics of polycrystalline hybrid perovskite nanoparticle thin films", Sustainable Energy Research 11 (2024) 30. https://doi.org/10.1186//540807-24-00124-0.

M. Fahrul, R. Hanifah, J. Jaafar, M. Aziz, A. Fauzi, M. A. Rahman & M. H. Dzarfan, ‘‘Synthesis of graphene oxide nanosheets via modified Hummers’ method and its physicochemical properties", Journal Teknologi (Sciences & Engineering) 1 (2015) 189. https://journals.utm.my/jurnalteknologi/article/view/3555.

D. Markus, I. Istiqomah, A. F. Yusril, N. Nasikhudin, A. Yatimah & M. Worawat, ‘‘Potential of enhancing rGO based composite and numerous morphological for enhancing supercapacitors performance", Journal of Material Sciences 20 (2023) 2077. https://ceramics.onlinelibrary.wiley.com/doi/full/10.1111/ijac.14377.

A. C. Nkele, U. Uwanko, A. Alshoaibiu, F. I. Ezema, ‘‘One-step spin coating of methylammonium lead iodide on SILAR-deposited tin oxide (SnO2) for effective electron transport", Results in Optics 13 (2023) 100521. https://www.sciencedirect.com/science/article/pii/S2666950123001736.

S. Amole, M. Awodele, O. Adedokun, M. Jain & A. O. Awodugba, ‘‘Solgel spin coating synthesis of TiO2 nanostructure and its optical characterization", Journal of Material Science and Chemical Engineering 7 (2019) 23. http://doi.org/10.4236/msce2019.76003.

A. O. Awodugba & O. Adedokun, ‘‘On the physical and optical characterization of CdS thin films deposited by the chemical bath deposition technique", The Pacific Journal of Sci. and Tech 12 (2011) 334. https://www.scirp.org/reference/referencespapers?referenceid=2537712.

O. Adedokun, P. Sivaprakas, A. Ajani, I. T. Bello, S. Arumugam, ‘‘Structural, optical and magnetic studies of sol-gel synthesized Mg-doped pure anatase TiO2 nanoparticles for spintronic and optoelectronics applications", Physica B 667 (2023) 415199. https://www.sciencedirect.com/science/article/abs/pii/S0921452623005665.

O. Adedokun, Y. K. Sanusi & A. O. Awodugba, ‘‘Pigment extracts of citrus peels as light sensitizers for dye-sensitized solar cells", Journal of Material Sciences and Applications 3 (2017) 1. https://www.academia.edu/104324249/Pigment_Extracts_of_Citrus_Peels_as_Light_Sensitizers_for_Dye_Sensitized_Solar_Cells?uc-sb-sw=111804670.

A. R. M. Yusoff & M.K. Nazeeruddin, ‘‘Low-Dimensional perovskites: From synthesis to stability in perovskite solar cells", tAdv. Energy Mater 8 (2018) 1702073. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201702073.

C. H. Chieng, K. Nazeeruddin, M. Gratzelc & C. G. Wu, ‘‘The synergistic effect on H2O and DMF towards stable and 20 % efficiency inverted perovskite solar cells", Energy Environ. Sci. 10 (2017) 808. https://pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee03586h/unauth.

A. C. Nkele, A. C. Nwanya, N. M. Shinde, S. Ezugwu, M. Maaza, J. S. Shaiku & F. I. Ezema, ‘‘The use of nickel oxide as a hole transport material in perovskite solar cell centrifugation: achieving a high performance and stable device", International Journal of Energy Research 44 (2020) 9839.

https://onlinelibrary.wiley.com/doi/abs/10.1002/er.5563.

N. Masclocene & A. Guaghardi, ‘‘Coherent nanotwins and dynamic disorder in caecium lead halide perovskite nanocrystals", ACS Nano 11 (2021) 3819. https://pubs.acs.org/doi/full/10.1021/acsnano.7b00017.

Q. Wang, Q. Dang, T. Li, A. Gruverman & J. Hasung, ‘‘Thin insulating tunneling contact for efficient and water-resistant perovskite solar cells", Adv Mater 28 (2024) 6734. https://www.osti.gov/biblio/1342746.

H. S. Bhatti, S. T. Hussain, F. A. Khan & S. Hussain, ‘‘Synthesis and induced multiferrroicity of perovskite PbTiO3", Appl. Surf. Sci. 367 (2016) 291. https://www.sciencedirect.com/science/article/abs/pii/S0169433216300137.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J.M. Rondinelli, J. Jang, J. T. Hupp & M. G. Kanatzidis, ‘‘Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors", Chem. Mater 28 (2016) 2852. https://pubs.acs.org/doi/full/10.1021/acs.chemmater.6b00847.

K. Subodh, ‘‘Spectroscopy of Organic Compounds", Cosmic rays 10 (2006) 143005. https://www.semanticscholar.org/paper/Spectroscopy-of-Organic-Compounds-Kumar/6a31f4490b53074adb4281bb5578947eb33afcdd.

R. D. Chavan, D. Prochovic, B. Buczak, M. M. Tavakoli, P. Yedav, M. Fialkowski & C. K. Hong, ‘‘Gold Nanoparticle functionalized with fullerene derivatives as an effective interface layer for improving the efficiency and stability of planar perovskite solar cells", Adv. Mater Interface early view 7 (2020) 2001144. https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202001144.

R. Ihly, A. M. Dowgiallo, M. Yang, P. Schulz, N. J. Stanton, O. G. Reid, A. J. Ferguson, K. Zhu, J.J. Berry and J. L. Blackburn, ‘‘Efficient charge extraction and slow recombination in organic– inorganic perovskites capped with semiconducting single walled carbon nanotubes", Energy Environ. Sci. 9 (2016) 1439. https://pubs.rsc.org/en/content/articlelanding/2016/ee/c5ee03806e/unauth.

C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. Jang, J. T. Hupp & M. G. Kanatzidis, ‘‘Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors", Chem. Mater 28 (2016) 2852. https://pubs.acs.org/doi/full/10.1021/acs.chemmater.6b00847.

M. G. Ju, J. Dai, L. Ma, Y. Zhou & X. C. Zen, ‘‘Zero-dimensional organic–inorganic perovskite variant: transition between molecular and solid crystal", J. Am. Chem. 140 (2018) 10456. https://pubs.acs.org/doi/abs/10.1021/jacs.8b03917.

XRD pattern of MAPbBr3 nanoparticles film.

Published

2024-09-20

How to Cite

Reduced graphene oxide as the electron transport layer in perovskite solar cell: effect on the photovoltaic performance. (2024). Recent Advances in Natural Sciences, 2(2), 116. https://doi.org/10.61298/rans.2024.2.2.116

How to Cite

Reduced graphene oxide as the electron transport layer in perovskite solar cell: effect on the photovoltaic performance. (2024). Recent Advances in Natural Sciences, 2(2), 116. https://doi.org/10.61298/rans.2024.2.2.116