Fermented Moringa oleifera seed-cassava inclusion improves protein and selected biochemical indices in alloxan-induced diabetes in animal model

Authors

  • P. N. Anyiam Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria | nnovative Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 57100, Chiang Rai, Thailand
  • C. P. Nwuke Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria
  • E. N. Uhuo Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria
  • O. Ajah Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria
  • C. P. Uche Department of Human Nutrition and Dietetics, College of Applied Food Sciences and Tourism, Michael Okpara University of Agriculture, Umudike, P.M.B 7267, Umuahia, Nigeria
  • E. M. Kalu Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria
  • P. C. Kelechi Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria
  • B. M. Eddie-Nkwoh Department of Biochemistry, College of Natural Science, Michael Okpara University of Agriculture, Umudike, P.M.B 7262, Umuahia, Abia State, Nigeria

Keywords:

Caputo fractional derivative, Crank–Nicolson finite difference formulation, Time fractional convection-diffusion-reaction equation, Extended cubic B-spline basis functions, Stability and convergence

Abstract

Despite the availability of many pharmacological interventions for diabetes management, current evidence shows an alarming rising trend in the occurrence of undesirable complications, confirming that other complementary approaches are required. This study evaluated the nutraceutical properties of fermented Moringa oleifera seed-Cassava (FMOC) inclusion on selected biochemical parameters in rats induced with diabetes. Portions of cassava was substituted with moringa seed at 100:0 (control), 80:20 (not fermented:T1), 80:20 (fermented;T2) and 70:30% (fermented:T3). Fermentation was achieved using a starter culture containing Lactic acid bacteria for 36 h. Thirty-six (36) male albino rats were randomly divided into six groups (n=6/group). Groups B-F were rendered diabetic using alloxan (150 mg/kg. bw; IP) while group A served as the normal control. The effects of FMOC on proximate and selected biochemical indices of diabetic rats were evaluated. Results showed that protein increased significantly (p<0.05) (2.43}0.1 to 20.44} 02 g/100g) in the fermented sample as against non fermented control. All test diets (especially T2) counteracted the diabetic effects in rats by lowering (P<0.05) the elevated serum levels of glucose (249.0 to 105.6 mg/dl), Cholesterol (6.73 to 4.13mmol/L), TAG (2.43 to 1.99mmo/L), LDL (3.72 to 2.66mmol/L), Urea (35.3 to 23.2mmol/L) and malondialdehyde (2.34 to 1.29mg/dl) compared with diabetic group. It also improved (P<0.05) glutathione (2.69-3.76mg/dl) and catalase enzyme activity (1.52-2.90 U/mg). No significant effect was recorded for HDL (P>0.05). Histological outcomes of pancreas corroborated these findings. A food–based approach incorporating fermented M. oleifera seed could be considered an effective strategy to manage the complications that might arise from diabetes.

Dimensions

K. L. Ong, L. K. Stafford, S. A. McLaughlin, E. J. Boyko, S. E. Vollset, A. E. Smith, B. E. Dalton, J. Duprey, J. A. Cruz, H. Hagins & P. A. Lindstedt, ‘‘Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021", The Lancet 402 (2023) 203. https://doi.org/10.1016/s0140-6736(23)01301-6.

P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova & J. E. Shaw, ‘‘Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition", Diabetes Res Clin Pract. 157 (2019) 107843. https://doi.org/10.1016/j.diabres.2019.107843.

S. Jiang, J. L. Young, K. Wang, Y. Qian & L. Cai, ‘‘Diabetic-induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)", Mol Med Rep. 22 (2020) 603. https://doi.org/10.3892/mmr.2020.11175.

M. C. Petersen, D. F. Vatner & G. I Shulman, ‘‘Regulation of hepatic glucose metabolism in health and disease", Nat Rev Endocrinol. 13 (2017) 572. https://doi.org/10.1038/nrendo.2017.80.

K. Kohei, ‘‘Pathophysiology of Type 2 Diabetes and Its Treatment Policy", Japan Medical Association Journal 53 (2010) 41. https://cir.nii.ac.jp/crid/1573668926266253696.

M. J. Fowler, ‘‘Microvascular and macrovascular complications of diabetes. Clin Diabetes. 26 (2008) 77. https://doi.org/10.2337/diaclin.26.2.77.

M. Rahimi-Madiseh, P. Karimian, M. Kafeshani & M. Rafieian-Kopaei, ‘‘The effects of ethanol extract of Berberis vulgaris fruit on histopathological changes and biochemical markers of the liver damage in diabetic rats", Iran J Basic Med Sci. 20 (2017) 552. https://doi.org/10.22038/IJBMS.2017.8681.

A. Chawla, R. Chawla & S. Jaggi, ‘‘Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?", Indian J Endocrinol Metab. 20 (2016) 546. https://doi.org/10.4103/2230-8210.183480.

K. Dhatariya, L. Corsino & G. E. Umpierrez, ‘‘Management of Diabetes and Hyperglycemia in Hospitalized Patients", South Dartmouth (MA): MDText.com, Inc.; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279093/.

Q. Shi, K. Nong, P. O. Vandvik, G. H. Gyatt, O. Schnell, L. Ryden, N. Marx, F. C. Brosius, R. A. Mustafa, A. Agarwal & X. Zou ‘‘Benefits and harms of drug treatment for type 2 diabetes. Systematic review and network meta-analysis of randomized controlled trials", BMJ 381 (2023) e074068.

https://doi.org/10.1136/bmj-2022-074068.

A. Cencic & W. Chingwaru, ‘‘The role of functional foods, nutraceuticals, and food supplements in intestinal health", Nutrients 2 (2010) 611. https://doi.org/10.3390/nu2060611.

M. A. Farag, A. Abdelwareth, I. E. Sallam, M. El-Shorbagi, N. Jehmlich, K. Fritz-Wallace, S. S. Schäpe, U. Rolle-Kampczyk, A. Ehrlich, L. A.Wessjohann & M. von Bergen, ‘‘Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model", J Adv Res. 3 (2020) 47. https://doi.org/10.1016/j.jare.2020.01.001.

O. Contreras-Rodriguez, F. Mata, J. Verdejo-Román, R. Ramírez-Bernabé, D. Moreno, R. Vilar-Lopez, C. Soriano-Mas & A. Verdejo-García, ‘‘Neural-based valuation of functional foods among lean and obese individuals", Nutr Res. 78 (2020) 27. https://doi.org/10.1016/j.nutres.2020.03.006.

A. Alkhatib, C. Tsang, A. Tiss, T. Bahorun, H. Arefanian, R. Barake, A. Khadir & J. Tuomilehto, ‘‘Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management", Nutrients 9 (2017) 1310. https://doi.org/10.3390/nu9121310.

G. Sikand, P. Kris-Etherton & N. M. Boulos, ‘‘Impact of functional foods on prevention of cardiovascular disease and diabetes", Curr Cardiol Rep. 17 (2015) 39. https://doi.org/10.1007/s11886-015-0593-9.

G. E. Deligiannidou, E. Philippou, M. Vidakovic, W. V. Berghe, A. Heraclides, N. Grdovic, M. Mihailovic & C. Kontogiorgis, ‘‘Natural products derived from the mediterranean diet with antidiabetic activity: from Insulin mimetic hypoglycemic to nutriepigenetic modulator compounds", Curr Pharm Des. 25 (2019) 1760. https://doi.org/10.2174/1381612825666190705191000.

P. Mirmiran, Z. Bahadoran & F. Azizi, ‘‘Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review", World J Diabetes 15 (2014) 267. https://doi.org/10.4239/wjd.v5.i3.267.

A. Chis, P. A. Noubissi, O. L. Pop, C. I. Mures, M. A. Fokam-Tagne, R. Kamgang, A. Fodor, A. V. Sitar-Tăut, A. Cozma, O. H. Orăs,an & S. C. Heghes, , ‘‘Bioactive compounds in Moringa oleifera: Mechanisms of action, focus on their anti-Inflammatory properties", Plants 13 (2024) 20. https://doi.org/10.3390/plants13010020.

M. Minaiyan, G. Asghari, D. Taheri, M. Saeidi & S. Nasr-Esfahani, ‘‘Antiinflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats", Avicenna J Phytomed. 4 (2014) 127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103706/.

M. C. Coriolano, J. de Santana-Brito, L. L. de Siqueira Patriota,A. K. de Araujo Soares, V. M. B. de Lorena, P. M. G. Paiva, T. H. Napoleao, L. C. B. Coelho, & C. M. L. de Melo, ‘‘Immunomodulatory effects of the water-soluble Lectin from Moringa oleifera Seeds (WSMoL) on human peripheral blood mononuclear cells (PBMC)", Protein Pept Lett. 25 (2018) 295. https://doi.org/10.2174/0929866525666180130141736.

X. Xiao, J.Wang, C. Meng,W. Liang, T.Wang, B. Zhou, Y.Wang, X. Luo, L. Gao & L. Zhang. ‘‘Moringa oleifera Lam and its therapeutic effects in immune disorders", Front Pharmacol. 17 (2020) 566783. https://doi.org/10.3389/fphar.2020.566783.

K. Z. Khor, V. Lim, E. J. Moses & N. Abdul Samad, ‘‘The in-vitro and invivo anticancer properties of Moringa oleifera", Evid Based Complement Alternat Med. 14 (2018) 1071243. https://doi.org/10.1155/2018/1071243.

M. Das, J. N. Mohanty, S. K. Bhuyan & R. Bhuyan, ‘‘Anti-cancer activity of Moringa oleifera Lam. seed oil on oral cancer", Beni-Suef Univ J Basic Appl Sci 13 (2024) 25.

https://doi.org/10.1186/s43088-024-00475-z.

A. R. Verma, M. Vijayakumar, C. S. Mathela & C. V. Rao, ‘‘Invitro and in-vivo antioxidant properties of different fractions of Moringa oleifera leaves", Food and Chemical Toxicology 47 (2009) 2196. http://dx.doi.org/10.30495/MEDHERB.2021.688096.

A. A. Adedapo, O. O. Falayi & A. A. Oyagbemi, ‘‘Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals", J. Basic Clin. Physiol. Pharmacol. 26 (2015) 491. https://doi.org/10.1515/jbcpp-2014-0105.

H. A. Ogbunugafor, F. U. Eneh, A. N. Ozumba, M. N. Igwo-Ezikpe, J. Okpuzor, I. O. Igwilo & O. A. Onyekwelu, ‘‘Physico-chemical and antioxidant properties of Moringa oleifera seed oil", Pak J Nutr. 10 (2011) 409. https://doi.org/10.3923/pjn.2011.409.414.

B. Padayachee & H. Baijnath, ‘‘An updated comprehensive review on the medicinal, phytochemical and pharmacological properties of moringa oleifera", South Africa Journal of Botany. 129 (2020) 304. https://doi.org/10.1016/j.sajb.2019.08.021.

T. O. Ajayi, J. O. Moody, O. J. Odumuwagun & J. A. O. Olugbuyiro, ‘‘Lipid altering potential of Moringa oleifera Lam seed extract and isolated constituents in wistar rats", Afr. J. Biomed. Res 23 (2020) 77. https://www.ajol.info/index.php/ajbr/article/view/202162.

M. M. Almatrafi, M. Vergara-Jimenez, A. G. Murillo, G. H. Norris, C. N. Blesso & M. L. Fernandez, ‘‘Moringa leaves prevent hepatic lipid accumulation and inflammation in guinea pigs by reducing the expression of genes involved in lipid metabolism", Int. J. Mol. Sci. 18 (2017) 1330. https://doi.org/10.3390/ijms18071330.

S. K. Biswas, A. Chowdhury, J. Das, A. Roy & S. Z. Hosen. ‘‘Pharmacological potentials of Moringa oleifera lam.: a Review", Int. J. Pharma Sci. Res. 3 (2012) 305. https://doi.org/10.13040/IJPSR.0975-8232.

M. Krawczyk, I. Burzynska-Pedziwiatr, L. A.Wozniak & M. Bukowiecka- Matusiak, ‘‘Evidence from a systematic review and meta-analysis pointing to the antidiabetic effect of polyphenol-rich plant extracts from Gymnema montanum, Momordica charantia and Moringa oleifera", Current Issues in Molecular Biology 44 (2022) 699. https://doi.org/10.3390/cimb44020049.

F. T. Mthiyane, P. V. Dludla, K. Ziqubu, S. X. H. Mthembu, N. Muvhulawa, N. Hlengwa, B. B. Nkambule & S. E. Mazibuko-Mbeje, ‘‘A review on the antidiabetic properties of Moringa oleifera extracts: focusing on oxidative stress and inflammation as main therapeutic targets", Front Pharmacol. 11 (2023) 940572. https://doi.org/10.3389/fphar.2022.940572.

S. I. Oyeleye, T. A. Olasehinde, A. O. Ademosun, A. J. Akinyemi & G. Oboh, ‘‘Horseradish (Moringa oleifera) seed and leaf inclusive diets modulates activities of enzymes linked with hypertension, and lipid metabolites in high-fat fed rats", Pharma Nutrition 7 (2019) 100141. https://doi.org/10.1016/j.phanu.2018.100141.

F. Anwar, S. Latif, M. Ashraf & A. H. Gilani, ‘‘Moringa oleifera: a food plant with multiple medicinal uses", Phytother Res., 21 (2007) 17. https://doi.org/10.1002/ptr.2023.

A. B. Falowo, F. E. Mukumbo, E. M. Idamoro, J. M. Lorenzo, A. J. Afolayan & V. Muchenje, ‘‘Multi-functional application of Moringa oleifera lam. in nutrition and animal food products. A review", Food Research international international 106 (2018) 317. https://doi.org/10.1016/j.foodres.2017.12.079.

P. Bridgemohan, R. Bridgemohan & M. Mohamed, ‘‘Chemical composition of a high protein animal supplement from Moringa oleifera", African J. of Food Science and Technology 5 (2014) 125. https://dx.doi.org/10.14303/ajfst.2014.041.

L. Liang, C. Wang, S. Li, X. Chu & K. Sun, ‘‘Nutritional compositions of Indian Moringa oleifera seed and antioxidant activity of its polypeptides", Food science and nutrition. 7 (2019) 1754. https://doi.org/10.1002/fsn3.1015.

T. Y. Shi, M. Yu & Y. Q. Han, ‘‘The nutrients and characteristic analysis of Liaoning peanut varieties", Food Research and Development 38 (2017) 142. https://www.cabidigitallibrary.org/doi/full/10.5555/20183091919.

S. A. El-Sohaimy, G. M. Hamad, S. E. Mohammed, M. Amar & R. R. Al- Hindi, ‘‘Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food", Global Advanced Research Journal of Agricultural Science. 4 (2015) 188.

R. S. N. Brilhante, J. A. Sales, V. S. Pereira, C. M. Castelo-Branco, R. Cordeiro, C. M. de Souza Sampaio, M. D. A. N. Paiva, J. B. F. Dos Santos, J. J. C. Sidrim & M. F. G. Rocha ‘‘Research advances on the multiple uses of moringa oleifera: A sustainable alternative for socially neglected population", Asian Pacific Journal of Tropical Medicine 10 (2017) 621. https://doi.org/10.1016/j.apjtm.2017.07.002.

J. A. Montagnac, C. R. Davis & S. Tanumihardjo, ‘‘Nutritional value of cassava for use as a staple food and recent advances for improvement", Compr Rev Food Sci Food Saf. 8 (2009) 181e94. https://doi.org/10.1111/j.1541-4337.2009.00077.x

N. K. Morgan & M. Choct, ‘‘Cassava: Nutrient composition and nutritive value in poultry diets", Animal nutrition. 2 (2016) 253. https://doi.org/10.1016/j.aninu.2016.08.010.

P. N. Anyiam, C. P. Nwuke, E. N. Uhuo, U. E. Ije, E. M. Salvador, B. M. Mahumbi & B. H. Boyiako ‘‘Effect of fermentation time on nutritional, antinutritional factors and in-vitro protein digestibility of Macrotermes nigeriensis-cassava mahewu", Measurement: Food. 11 (2023) 100096. https://doi.org/10.1016/j.meafoo.2023.100096.

J. A. Adebo, P. B. Njobeh, S. Gbashi, A. B. Oyedeji, O. M. Ogundele & S. A. Oyeyinka, ‘‘Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability", Fermentation 8 (2022) 63. https://doi.org/10.3390/fermentation8020063.

N. Şanlier, B. B. Gökcen & A. C. Sezgin, ‘‘Health benefits of fermented foods", Crit Rev Food Sci Nutr. 59 (2019) 506. http://dx.doi.org/10.1080/10408398.2017.1383355.

R. Sharma, P. Garg, P. Kumar, S. K. Bhatia & S. Kulshrestha, ‘‘Microbial fermentation and its role in quality improvement of fermented food", Fermentation 6 (2020) 1 https://doi.org/10.3390/fermentation6040106.

Q. Guo, P. Chen & X. Chen, ‘‘Bioactive peptides derived from fermented foods: preparation and biological activities", Journal of functional foods 101 (2023) 105422. https://doi.org/10.1016/j.jff.2023.105422.

H. Kaur, G. Kaur & S. A. Ali. ‘Dairy-based probiotic-fermented functional foods: an update on their health-promoting properties.’’ Fermentation 8 (2022) 425. https://doi.org/10.3390/fermentation8090425.

P. N. Anyiam, P. N. Onwuegbuchu & C. L. Ekemezie, ‘‘ Traditional fermented foods in Nigeria and Covid-19. A possible approach for boosting immune system", Int’l J. Applied Sci. Res. 3 (2020) 127. https://www.researchgate.net/publication/346414017_Traditional_fermented_foods_in_Nigeria_and_Covid-19_A_Possible_Approach_for_Boosting_Immune_System.

P. Zhao, Y. Hou, Z.Wang, A-M. Lia, L. Pan, J. Zhang, Y. Q. Dong, Z. Y. Hu, J. H. Huang & X. Q. Ou, ‘‘Effect of fermentation on structural properties and antioxidant activity of wheat gluten by bacillus subtilis", Frontiers in Nutr. 10 (2023) 23. https://doi.org/10.3389%2Ffnut.2023.1116982.

Y. Jeong, H. Kim, J. Y. Lee, G. Y. Won, S. Choi, G. H. Kim & C. H. Kang, ‘‘The antioxidant, anti-diabetic and anti-adipogenesis potential and probiotic properties of Lactic acid bacteria isolated from human and

fermented foods", Fermentation 7 (2021) 123. http://dx.doi.org/10.3390/fermentation7030123.

S. A. Ibrahim, R. Gyawali, S. S.Awaisheh, R. D. Ayivi, R. C. Silva, K. Subedi, S. O. Aljaloud, S. A. Siddiqui & A. Krastanov, ‘Fermented foods and probiotics: An approach to lactose intolerance", Journal of Dairy Research 88 (2021) 357. https://doi.org/10.1017/S0022029921000625.

M. J. Saez-Lara, C. Gomez-Llorente, J. Plaza-Diaz & A. Gil. ‘The role of probiotic Lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials", Biomed Res Int. 15 (2015) 505878. https://doi.org/10.1155/2015/505878.

Association of Official Analytical Chemists (AOAC), Official methods of analysis 18th Ed.,Washington D.C. USA, 2012, pp. 806–842. https://www.scirp.org/reference/referencespapers?referenceid=1450484.

C. Onyeabo, P. N. Anyiam & A. C. Egbuonu, ‘‘Natural productscharacterized Moringa oleifera leaves methanolic extract and anti-diabetic properties mechanisms of its fractions in streptozotocin-induced diabetic rats", The Nigerian journal of pharmacy 56 (2022) 18. https://orcid.org/0000-0002-1440-6605.

C. C. Allain, L. S. Poon, C. S. Chan, W. F. Richmond & P. C. Fu, ‘‘Enzymatic determination of total serum cholesterol", Clinical Chemistry 20 (1974) 470. https://doi.org/10.1093/clinchem/20.4.470.

J. J. Albers, G. R.Warmick&M. C. Cheng, ‘‘Determination of high-density lipoprotein (HDL) cholesterol. Lipids, 13 (1978) 926. https://doi.org/10.1007/BF02535134.

W. T. Friedelwald, R. I. Levy & D. S. Fredrickson, ‘‘Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge", Clinical Chemistry 18 (1972) 499. https://cir.nii.ac.jp/crid/1573950400766700928.

C. U. Igwe, C. I. Iheme, C., S. Alisi, L. A. Nwogu, C. O. Ibegbulem & A. C. Ene, ‘‘Lipid profile and atherogenic predictor indices of albino rabbits administered coconut water as antidote to paracetamol overdose", Journal of Coastal life medicine 4 (2016) 974. http://dx.doi.org/10.12980/jclm.4.2016J6-223.

P. Kakkar, B. Das & P. N. Viswanathan, ‘‘A modified spectrophotometric assay of superoxide dismutase", Indian J Biochem Biophys. 21 (1984) 130.

H. Aebi , ‘‘Catalase. In: Bergmeyer, H.U. (Ed.), Methods in Enzymatic Analysis, 3 (1974). Academic Press Inc, New York, pp. 673. http://dx.doi.org/10.1016/b978-0-12-091302-2.50032-3.

G. L. Ellmann, ‘‘Tissue sulfhydryl groups", Arch. Biochem. Biophy. 82 (1959) 70. https://doi.org/10.1016/0003-9861(59)90090-6.

H. Ohkawa, N. Ohishi & K. Yagi, ‘‘Assay for lipid peroxides in animals’ tissue by thiobarbituric acid reaction", Anal. Biochem. 95 (1979) 351. https://doi.org/10.1016/0003-2697(79)90738-3.

J. K. Fawcett & J. Scott , ‘‘A rapid and precise method for the determination of urea", Journal of Clinical Pathology 13 (1960) 156. https://doi.org/10.1136/jcp.13.2.156.

T. J. Henry, Clinical chemistry principles and techniques (2th ed.), Harper and Row Publishers, New York, 1974. https://academic.oup.com/clinchem/article-abstract/21/2/273/5691052.

C. Onyeabo, N. K. Achi, P. N. Anyiam, U. B. Onyedikachi, C. A. Goodluck, O. O. Nnana&C. N. Udezuluigbo ‘‘Curcuma longa extract improves serum electrolytes and hormone prodile of dihydrotestosterone-estradiol valerate induced benign prostatic hyperplasia male rats", Animal Research International 18 (2021) 4094. https://www.ajol.info/index.php/ari/article/view/214229.

R. I. Uroko, P. N. Anyiam, E. N. Uhuo & O. Ajah, ‘‘Combined ethanol extract of Spermacoce radiata and Hypselodel physpoggeana prevents renal damage and dyslipidemia in benign prostatic hyperplasia induced rats", Journal of medicinal herbs 12 (2021) 43. http://dx.doi.org/10.30495/MEDHERB.2021.688096.

P. N. Anyiam, C. P. Nwuke, C. Onyeabo, P. C. Uche, G. C. Adimuko, F. A. Guibunda & E. C. Ononogbu, ‘‘Potential contribution of Macrotermes nigeriensis-improved fermented cassava mahewu to nutrient intake adequacy of school children in Umudike", Food Chemistry Advances 1 (2022) 100062. https://doi.org/10.1016/j.focha.2022.100062.

D. T. Desta, G. N. Kelikay, M. Zekwos, M. Eshete, H. H. Reda, F. R. Alemayehu & A. T. Zula, ‘‘Influence of fermentation time on proximate composition and microbial loads of Enset, (Ensete ventricosum), sampled from two different agroecological districts", Food Sci Nutr. 16 (2021) 5641. https://doi.org/10.1002/fsn3.2527.

A. O. Obadina, O. J. Akinola, T. A. Shittu & H. A. Bakare, ‘‘Effect of natural fermentation on the chemical and nutritional composition of fermented Soymilk-Nono", Nigerian Food Journals 31 (2013) 91. https://doi.org/10.1016/S0189-7241(15)30081-3.

A. F. Andeta, D. Vandeweyer, F. Woldesenbet, F. Eshetu, A. Hailemicael, F. Woldeyes, S. Crauwels, B. Lievens, J. Ceusters, K. Vancampenhout & L. Van Campenhout, ‘‘Fermentation of Enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamics", Food Microbiology 73 (2018) 342. https://doi.org/10.1016/j.fm.2018.02.011.

A. Ojokoh, O. E. Fayemi, F. C. Ocloo & F. L. Nwokolo, ‘‘Effect of fermentation on proximate composition, physicochemical and microbial characteristics of pearl millet (Pennisetum glaucum) and Acha ( Digitaria exilis(kippist) stapf ) flour blends", J. Agric. Biotechnol. Sust. Deve. 7 (2015) 1. http://dx.doi.org/10.5897/JABSD2014.0236.

K. P. Adejuwon, O. F. Osundahunsi, S. A. Akinola, M. O. Oluwamukomi & M. Mwanza, ‘‘Effect of fermentation on nutritional quality, growth and hematological parameters of rats fed sorghum-soybean-orange flesh sweet potato complementary diet", Crit. Rev. Food Sci. Nutr. 9 (2021) 639. https://doi.org/10.1002/fsn3.2013.

C. A. Kumolu-Joh & P. E. Ndimele, ‘‘Antioxidantive and anti-fungal effects of fresh ginger (Zingiber officinale ) treatment on the shelf life of hot-smoked catfish ( Clarias gariepinus , Burchell, 182)", Asian J. Biol. Sci. 4 (2011) 532. https://doi.org/10.3923/ajbs.2011.532.539.

J. A. Adebiyi, P. B. Njobeh & E. Kayitesi, ‘‘Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea)", Microchemical Journal 1 49 (2019) 104034. https://doi.org/10.1016/j.microc.2019.104034.

B. S. Jude-Ojei, A. Lola, I. O. Ajayi & I. Seun, ‘‘Functional and pasting properties of Maize ‘Ogi’ supplemented with fermented moringa Seeds", J Food Process Technol. 8 (2017) 674. https://doi.org/10.4172/2157-7110.100067.

J. Ejigui, L. Savoie, J. Marin & T. Desrosiers, ‘‘Beneficial changes and drawbacks of a traditional fermentation process on chemical composition and antinutritional factors of yellow maize (Zea mays)", J. Biol. Sci. 5 (2005) 590. https://doi.org/10.3923/jbs.2005.590.596.

N. M. Nnam & P. N. Obiakor, ‘‘Effect of fermentation on the nutrient and antinutrient composition of baobab (Adansonia digitata ) seeds and rice (Oryza sativa) grains", Ecol. Food Nutr. 42 (2003) 265. https://doi.org/10.1080/03670244.2003.9657684.

G. Rizzo, L. Baroni & M. Lombardo, ‘‘Promising sources of plant-derived polyunsaturated fatty acids: Anarrative review", Int. J. Environ. Res. Public Health 20 (2023) 1683 https://doi.org/10.3390/ijerph20031683.

R. K. Saini, P. Prasad, R. V Sreedhar, K. Akhilender Naidu, X. Shang & Y-S Keum, ‘‘Omega−3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits - A review", Antioxidants 10 (2021) 1627. https://doi.org/10.3390/antiox10101627.

P. I. Akubor & J. K. Chukwu, ‘‘Proximate composition and selected functional properties of fermented and unfermented African oil bean (Pentaclethra macrophylla) seed flour", Plant Foods Hum. Nutr 54 (1999) 227. https://doi.org/10.1023/A:1008100930856.

E. C. Chinma, S. O. Azeez, H. T. Sulayman, K. Alhassan, S. N. Alozie, H. D. Gbadamosi, N. Danbaba, H. A. Oboh, J. C. Anuonye & O. A. Adebo, ‘‘Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread", J. Food Sci. 85 (2020) 4281. https://doi.org/10.1111/1750-3841.15527.

M. Granito, J. Frias, R. Doblado, M. Guerra, M. Champ & C. Vidal- Valverde, ‘‘Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation", Eur. Food Res. Technol., 214 (2002) 226. http://dx.doi.org/10.1007/s00217-001-0450-5.

E. O. Farinde, O. T. Olanipekun & R. B. Olasupo, ‘‘Nutritional composition and antinutrients content of raw and processed lima bean (Phaseolus lunatus)", Ann. Food Sci. Technol. 19 (2018) 250. https://api.semanticscholar.org/CorpusID:219525330.

E. U. Onwurafor, J. C. Onweluzo & A. M. Ezeoke, ‘‘Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour", Niger. Food J. 32 (2014) 89. https://doi.org/10.1016/S0189-7241(15)30100-4.

O. J. Adebowale & K. Maliki, ‘‘Effect of fermentation period on the chemical composition and functional properties of pigeon pea (Cajanuscajan) seed flour", Int. Food Res. J., 18 (2011) 1329. https://eprints.federalpolyilaro.edu.ng/1022/.

Y. Xiao, G. Xing, X. Rui,W. Li, X. Chen, M. Jiang & M. Dong, ‘‘Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour", LWTFood Sci Technol., 63 (2015) 1317. http://dx.doi.org/10.1016/j.lwt.2015.04.046.

B. Grube, P. W. Chong, K. Z. Lau & H. D. Orzechowski, ‘‘A natural fiber complex reduces body weight in the overweight and obese: a double-blind, randomized, placebo-controlled study", Obesity (Silver Spring) 21 (2013) 58. https://doi.org/10.1002/oby.20244.

A. C. Ogodo, O. C. Ugbogu, R. A. Onyeagba & H. C. Okereke, ‘‘Effect of Lactic acid bacteria consortium fermentation on the proximate composition and in-vitro starch/protein digestibility of maize (Zea mays) flour", Am. J. Microbiol. Biotechnol. 4 (2017) 35. http://dx.doi.org/10.4172/2167-7972.1000148.

U. S. Onoja & I. C. Obizoba, ‘‘Nutrient composition and organoleptic attributes of gruel based on fermented cereal, legume, tuber and root flour", Agro-Sci. J. Trop. Agric. Food Environ. Ext. 8 (2009) 162. https://doi.org/10.4314/as.v8i3.51735.

M. M. Rashad, A. E. Mahmoud, H. M. Abdou & M. U. Nooman, ‘‘Improvement of nutritional quality and antioxidant activities of yeast fermented soybean curd residue", Afr. J. Biotechnol. 10 (2011) 5504. https://www.ajol.info/index.php/ajb/article/view/94330.

O. F. Olagunju, O. O. Ezekiel, A. O. Ogunshe, S. A. Oyeyinka & O. A. Ijabadeniyi, ‘‘Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind (Tamarindus indica L.) seed in the production of dawadawa-type condiment", LWT-Food Sci. Technol. 90 (2018) 455. http://dx.doi.org/10.1016/j.lwt.2017.12.064.

A. Asensio-Grau, J. Calvo-Lerma, A. Heredia & A. Andrés, ‘‘Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus’’. Food Funct. 11 (2020) 7905. https://doi.org/10.1039/D0FO01527J.

H. T. Olaleye, T. O. Oresanya & O. O. Ogundipe, ‘‘Comparative study on proximate and antinutritional factors of dehulled and undehulled fermented Lyon bean (Mucuna cochinchinensis)", Food Res. 4 (2020) 1611. http://dx.doi.org/10.26656/fr.2017.4(5).155.

W. Prinyawiwatkul, L. R. Beuchat, K. H. McWatters & R. D. Phillips, ‘‘Fermented cowpea flour: Production and characterization of selected physico-chemical properties. J. Food Proces. Preserv. 20 (1996) 265. https://doi.org/10.1111/j.1745-4549.1996.tb00747.x.

O. S. Ijarotimi & T. R. Esho, ‘‘Comparison of nutritional composition and anti-nutrient status of fermented, germinated and roasted Bambara groundnut seeds (Vigna subterranea)", Br. Food J. 111 (2009) 376. http://dx.doi.org/10.1108/00070700910951515.

E. Odion-Owase, A. O. Ojokoh & V. O. Oyetayo, ‘‘Effect of different fermentation methods on the microbial and proximate composition of pigeon pea (Cajanus cajan)", Microbiol. Res. J. Int. 23 (2018) 1. https://doi.org/10.9734/MRJI/2018/33604.

N. Nivetha, V. C. Suvarna & R. U. Abhishek, ‘‘Reduction of phenolics, tannins and cyanogenic glycosides contents in fermented beverage of linseed (Linum usitatissimum)", Int. J. Food Ferment. Technol. 8 (2018). 185.http://dx.doi.org/10.30954/2277-9396.02.2018.8.

D. Hill, I. Sugrue, E. Arendt, C. Hill, C. Stanton, & R. P. Ross, ‘‘Recent advances in microbial fermentation for dairy and health", F1000Research 6 (2017) 751. https://doi.org/10.12688%2Ff1000research.10896.1.

A. E. Memudu, E. J. Ewaoche, A. A. Odetola & O. O. Adeleye, ‘‘Antidiabetic effects of Moringa oleifera on pancreatic islet cell of adult male wistar rats", European Journal of Pharmaceutical and medical Research 7 (2020)913.

Y. Bao, J. Xiao, Z. Weng, X. Lu, X. Shen & F. Wang, ‘‘A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db Mice", Food Chemistry 311 (2020) 125948. https://doi.org/10.1016/j.foodchem.2019.125948.

M. S. Ganjayi, R. S. Karunakaran, S. Gandham & B. Meriga, ‘‘Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells", Rev Bras Farmacogn 33 (2023) 334.

https://doi.org/10.1007/s43450-022-00352-9.

G. Shi, Y. Li, Q. Cao, H.Wu, X. Tang, X. Gao, J. Yu, Z. Chen & Y. Yang, ‘‘In-vitro and in-vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature", Biomedicine & Pharmacotherapy 109 (2019) 1085. https://doi.org/10.1016/j.biopha.2018.10.130.

K. Tadera, Y. Minami, K. Takamatsu&T. Matsuoka, ‘‘Inhibition of alphaglucosidase and alpha- amylase by flavonoids", J. Nutr. Sci. Vitaminol 52 (200) 149. https://doi.org/10.3177/jnsv.52.149.

G. Bardy, A. Virsolvy, J. F. Quignard, M. A. Ravier, G. Bertrand, S. Dalle, G. Cros, R. Magous, S. Richard & C. Oiry, ‘‘Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells", Br J Pharmacol. 169 (2013) 1102. https://doi.org/10.1111/bph.12194.

A. Jaja-Chimedza, L. Zhang, K. Wolff, B. L. Graf, P. Kuhn, K. Moskal, R. Carmouche, S. Newman, J. M. Salbaum & I. Raskin, ‘‘A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome", J Funct Foods. 47 (2018) 376. http://doi.org/10.1016/j.jff.2018.05.056.

P. Pournaghi, R. A. Sadrkhanlou, S. Hasanzadeh & A. Foroughi, ‘‘An investigation on body weights, blood glucose levels and pituitary-gonadal axis hormones in diabetic and metformin-treated diabetic female rats", Vet Res Forum. Spring. 3 (2012) 79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312800/.

T. Setyawati, R. Adawiyah, R. M. Walanda & R. R. Chandra, ‘‘Effectiveness of Moringa oleifera on triglyceride levels in diabetic wistar rats (Rattus norvegicus) induced with streptozotocin (STZ)", IOP Conf. series. Earth and Environmental science. 1075 (2022) 1012020.

https://iopscience. iop.org/article/10.1088/1755-1315/1075/1/012020/meta.

S. Aborhyem, H. Ismail, N. Agamy & D. Tayel, ‘‘Effect of Moringa Oleifera on lipid profile in rats. JHIPH. 46 (2016) 8. http://dx.doi.org/10.21608/jhiph.2016.20201.

M. Kobori, S. Masumoto, Y. Akimoto & H. Oike, ‘‘Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice", Mol Nutr Food Res. 55 (2011) 530. https://doi.org/10.1002/mnfr.201000392.

G. V. Gnoni, G. Paglialonga & L. Siculella . ‘Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells", Eur J Clin Invest. 39 (2009) 761. https://doi.org/10.1111/j.1365-2362.2009.02167.x.

S. Sanjukta&A. K. Rai, ‘‘Production of bioactive peptides during soybean fermentation and their potential health benefits", Trends in food science and technology 50 (2016). 1. http://dx.doi.org/10.1016/j.tifs.2016.01.010.

E. I. Omodanisi, Y. G. Aboua & O. O. Oguntibeju, ‘‘Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats", Molecules 22 (2017) 439. http://doi.org/10.3390/molecules22040439.

F. Wang, Y. Bao, X. Shen, G. Zengin, Y. Lyu, J. Xiao & Z. Weng, ‘‘Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway", Phytomedicine. 86 (2019) 153066. https://doi.org/10.1016/j.phymed.2019.153066.

A. K. Lim, ‘‘Diabetic nephropathy - complications and treatment", Int J Nephrol Renovasc Dis. 7 (2014) 361. https://doi.org/10.2147/IJNRD.S40172.

Y. Xie, B. Bowe, T. Li, H. Xian, Y.Yan&Z. Al-Aly. ‘Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus", Kidney Int. 93 (2018) 741. https://doi.org/10.1016/j.kint.2017.08.033.

Y. Wen, Y. Liu, Q. Huang, R. Liu, J. Liu, F. Zhang, Sh. Liu, &Y. Jiang, ‘‘Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway", Phytomedicine 95 (2022) 153856. https://doi.org/10.1016/j.phymed.2021.153856.

Photomicrograph of the pancreas histology.

Published

2024-10-20

How to Cite

Fermented Moringa oleifera seed-cassava inclusion improves protein and selected biochemical indices in alloxan-induced diabetes in animal model. (2024). Recent Advances in Natural Sciences, 2(2), 106. https://doi.org/10.61298/rans.2024.2.2.106

How to Cite

Fermented Moringa oleifera seed-cassava inclusion improves protein and selected biochemical indices in alloxan-induced diabetes in animal model. (2024). Recent Advances in Natural Sciences, 2(2), 106. https://doi.org/10.61298/rans.2024.2.2.106