Review on performance optimization of Lithium Sulphur Batteries (LiSBs) using carbon based electrodes

Authors

  • Raphael M. Obodo Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, P. M. B. 1038, Owerri, Imo State, Nigeria, National Center for Physics, Quaid-i-Azam University, Islamabad, 44000, Pakistan, NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an, 710072, China, UKM-NCP Joint Research and Development Center, Universiti Kebangsaan Malaysia, Lingkungan Ilmu, 43600 Bangi, Selangor, Malaysia, Institute of Microengineering and Nanoelectronics (IMEN)-Center of Excellence in Physics (CoE Physics), Quaid-i-Azam University, Islamabad, 44000, Pakistan, Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa, Department of Physics, Federal University of Technology, Owerri, Imo State, Nigeria, Department of Physics, Federal College of Education, Ehamufu, Enugu State, Nigeria
  • Innocent C. Nwodo Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
  • Princess C. Ani Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
  • Ekwevugbe Omugbe Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, P. M. B. 1038, Owerri, Imo State, Nigeria
  • C. Mbamara Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, P. M. B. 1038, Owerri, Imo State, Nigeria
  • Ugochukwu C. Elejere Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria, Department of Physics, Federal College of Education, Ehamufu, Enugu State, Nigeria
  • Chimezie U. Eze Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria, Department of Physics, Federal University of Technology, Owerri, Imo State, Nigeria
  • Ishaq Ahmad National Center for Physics, Quaid-i-Azam University, Islamabad, 44000, Pakistan, NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an, 710072, China, UKM-NCP Joint Research and Development Center, Universiti Kebangsaan Malaysia, Lingkungan Ilmu, 43600 Bangi, Selangor, Malaysia, Institute of Microengineering and Nanoelectronics (IMEN)-Center of Excellence in Physics (CoE Physics), Quaid-i-Azam University, Islamabad, 44000, Pakistan
  • M. Maaza UKM-NCP Joint Research and Development Center, Universiti Kebangsaan Malaysia, Lingkungan Ilmu, 43600 Bangi, Selangor, Malaysia, Institute of Microengineering and Nanoelectronics (IMEN)-Center of Excellence in Physics (CoE Physics), Quaid-i-Azam University, Islamabad, 44000, Pakistan, Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
  • Joseph N. Aniezi Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, P. M. B. 1038, Owerri, Imo State, Nigeria

Keywords:

Battery, Electrodes, Lithium , Sulphur

Abstract

Presently, researchers’ and experts are currently dealing with ways to maintain and improve the best performance of several energy storage technologies. This review focuses on how adding carbon derivatives to lithium sulfur battery (LiSBs) electrodes can reduce capacity fade, resistance, breakdown and poor performance while also enabling the best possible use of LiSBs in a variety of devices. Their rate as regards specific capacitance, energy and power densities, life duration, lightweight, etc., are among these optimal performances. The global energy crisis focused more scientists’ attention on how to enhance the performance of LiSBs devices for the benefit of humanity. Numerous carbon derivatives, including GO, rGO, carbon nanotubes (CNTs), etc., have advantageous properties that raise the efficiency of energy storage technologies. This review looked at LiSBs and the impact of carbon derivatives addition on their storage capability, cycle stability, life span and durability.

Dimensions

E. Ali, ‘‘Low Voltage Anode Materials for Lithium-Ion Batteries’’, Energy Storage Materials 7 (2017) 157. https://doi.org/10.1016/j.ensm.2017.01.009.

J. Cao, Q. H. Mao, L. Shi & Y. T. Qian, ‘‘Fabrication of γ-MnO2/αMnO2/hollow core/shell structures and their application to water treatment’’, Journal of Materials Chemistry 21 (2011) 16210. http://dx.doi.org/10.1039/C1JM10862J.

H. Cui, J. Xue & M. Wang, ‘‘Synthesis of high electrochemical performance Ni(OH)2 nanosheets through a solvent-free reaction for application in supercapacito’’, Adv. Powder Technol. 26 (2015) 434. https://doi.org/10.1016/j.apt.2014.11.016.

X. Cao, X. Zheng, B. Shi, W. Yang, J, J. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan & H. Zhang, ‘‘Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal-Organic Frameworks as Precursor for All-SolidState Flexible Supercapacitors’’, Adv. Mater 27 (2015) 4695. https://doi.org/10.1002/adma.201501310.

H. A. A. Abdel, X. Yang, J. Yang, X. Chen & J. Y. Ying, ‘‘Graphenewrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors’’, Nano Energy 26 (2016) 425 https://doi.org/10.1016/j.nanoen.2016.05.046.

Kim, et al, ‘‘Electrochemical Supercapacitors for Energy Storage and Conversion’’, John Wiley & Sons Ltd, 2015. https://doi.org/10.1002/9781118991978.hces112.

R. Dubey & V. Guruviah, ‘‘Review of carbon-based electrode materials for supercapacitor energy storage’’, Ionics 25 (2019) 1419. https://doi.org/10.1007/s11581-019-02874-0.

M. Jayalakshmi & K. Balasubramanian, ‘‘Simple capacitor to supercapacitor an overview’’, Int. J. Electrochem. Sci. 11 (2008) 1196. http://dx.doi.org/10.1016/S1452-3981(23)15517-9.

S. Gopukumar, D. H. Gregory, H. S. Kim & D. Shu, ‘‘Lithium-Ion Batteries: Recent Advances and New Horizons’’, International Journal of Electrochemistry 1 (2012) 1. https://doi.org/10.1155/2012/878416.

Zhu, D & Shao, Y., ‘‘NiO/ZnO Nanocomposite as Electrode Material for supercapacitors’’, Int. J. Electrochem. Sci. 13 (2018) 3601. https://doi.org/10.20964/2018.04.45.

Y. Zhu, L. Peng, D. Chen & G. Yu, ‘‘Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage’’, Nano Lett. 61 (2016) 742. https://doi.org/10.1021/acs.nanolett.5b04610

R. M Obodo, H. E. Nsude, C. U. Eze, B. O Okereke, S. C Ezugwu, I. Ahmad, M. Maaza & F. I. Ezema, ‘‘Optimization of MnO2, NiO and MnO2@NiO electrodes using graphene oxide for supercapacitor applications’’ Current Research in Green and Sustainable Chemistry 5 (2022) 100345. https://doi.org/10.1016/j.crgsc.2022.100345.

R. M. Obodo, S. M. Mbam, D. C. Iwueke, M. Ramzan, R. Ijeh, I. Ahmad, M. Maaza & F. I. Ezema, ‘‘Annealing Optimization of Graphitized Co3O4@CuO@NiO Composite Electrodes for Supercapacitor Applications’’, Energy Srorage 4 (2022) e347. https://doi.org/10.1002/est2.347.

S. Zhang, K. Ueno, K. Dokko & M. Watanabe, ‘‘Recent Advances in Electrolytes for Lithium-Sulfur Batteries’’, Advanced Energy Materials, 5 (2015) 1. https://doi.org/10.1002/aenm.201500117.

R.M.Obodo, T.C.Chibueze, I.Ahmad, C.E.Ekuma.A.T.Raji, M.Maaza, F. I. Ezema. ‘‘Effects of Copper Ion Irradiation on Supercapacitive Electrodes’’. Journal of Applied Electrochemistry Springer Nature 51 (2021) 829. https://doi.org/10.1007/s10800-021-01543-3

R. M. Obodo, M. Asjad, A. C. Nwanya, I. Ahmad, T. Zhao, A. B. C. Ekwealor, P. N. Ejikeme, M. Maaza & F. I. Ezema, ‘‘Evaluation of 8.0 MeV Carbon (C2+) Irradiation Effects on Hydrothermally Synthesized Co3O4@CuO@ZnO@GO Electrodes for Supercapacitor Applications’’, Electroanalysis 32 (2020) 2958. https://doi.org/10.1002/elan.202060382.

Y. Ye, Y. Shi, L. H. Saw & A. A. O. Tay, ‘‘Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs’’, International Journal of Heat and Mass Transfer 92 (2016) 893. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.052.

M. U. M. Patel, N. D. Luong, J. Seppälä, E. Tchernychova & R. Dominko, ‘‘ Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries’’, Journal of Power Sources 54 (2014) 55. https://doi.org/10.1016/j.jpowsour.2013.12.081.

R. M. Obodo, H. E. Nsude, S. E. Ugwuanyi, D. C. Iwueke, C. Iroegbu, T. Mehmood, I. Ahmad, M. Maaza, & F. I. Ezema, ‘‘Graphene Oxide in Enhancing Energy Storage Devices’’, Taylor & Francis Group, CRC Press, United Kingdom, 2022, pp. 75-86. https://doi.org/10.1201/9781003215196-7.

R. M. Obodo, U. K. Chime, A. C. Nkele, A. C. Nwanya, A. K. H. Bashir, I. G. Madiba, M. Asjad, I. Ahmad, T. Zhao, N. Thovhogi & F. I. Ezema, ‘‘Effect of annealing on hydrothermally deposited Co3O4-ZnO thin films for supercapacitor applications’’, Materials Today: Proceedings 36 (2020) 374. https://doi.org/10.1016/j.matpr.2020.04.229.

R. M. Obodo, A. C. Nwanya, I. S. Ike, I. Ahmad & F. I. Ezema, ‘‘Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices’’, in Chemically Deposited Nanocrystalline Metal Oxide Thin Films, USA, Springers, 2021, pp. 469 - 488. https://doi.org/10.1007/978-3-030-68462-4_18.

J. Kim, M. Eom, S. Noh & D. Shin, ‘‘ Performance optimization of allsolid-state lithium ion batteries using a Li 2S-P 2S 5 solid electrolyte and LiCoO2 cathode’’, Electronic Materials Letters 8 (2012) 209. https://doi.org/10.1007/s13391-012-2037-7.

X. Huang, T. Qiu, X. Zhang, L. Wang, B. Luo & L. Wang, ‘‘Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries’’, Materials Chemistry Frontiers 4 (2020) 2517. https://doi.org/10.1039/D0QM00303D.

W. Ren, W. Ma, S. Zhang & B. Tang, ‘‘Recent advances in shuttle effect inhibition for lithium sulfur batteries’’, Energy Storage Materials 23 (2019) 707. https://doi.org/10.1016/j.ensm.2019.02.022.

F. Li, Q. Liu, J. Hu, Y. Feng, P. He & J. Ma, ‘‘Recent advances in cathode materials for rechargeable lithium-sulfur batteries’’, Nanoscale 11 (2019) 15418. https://doi.org/10.1039/C9NR04415A.

L. Chen & L. L. Shaw, ‘‘Recent advances in lithium-sulfur batteries’’, Journal of Power Sources 267 (2014) 770. https://doi.org/10.1016/j.jpowsour.2014.05.111.

S. Zhang, K. Ueno, K. Dokko & M. Watanabe, ‘‘Recent Advances in

Electrolytes for Lithium-Sulfur Batteries.’’, Advanced Energy Materials 5 (2015) 1. https://doi.org/10.1002/aenm.201500117.

H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li & A. Jackson, ‘‘Overview in Lithium Sulphur Batteries’’, Nano Letters 11 (2011) 2644. https://doi.org/10.1021/nl200658a.

ConwayB.E., ‘‘ElectrochemicalSupercapacitors: ScientificFundamentals and Technological Applications’’, Plenum Press, New York, USA, 1999, PP. 1–8.

D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi & Q. H. Yan, ‘‘Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect’’, Adv Sci 5 (2017) 1700270. https://doi.org/10.1002/advs.201700270.

Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei & Q. Zhang, ‘‘Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts’’, Nano Lett 16 (2016) 519. https://doi.org/10.1021/acs.nanolett.5b04166.

M. Yu, R. Li, M. Wu & G. Shi, ‘‘Graphene materials for lithium-sulfur batteries’’, Energy Storage Materials 1 (2015) 51. https://doi.org/10.1016/j.ensm.2015.08.004.

H.E.Figen&S.Z.Baykara, ‘‘Effectofrutheniumadditiononmolybdenum catalysts for syngas production via catalytic partial oxidation of methane in a monolithic reactor’’, Int. J. Hydrogen Energy 43 (2018) 1129. http://dx.doi.org/10.1016/j.ijhydene.2017.10.173.

J. Wang, J. Yang, J. Xie & J. Xu, ‘‘A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries’’, Adv. Mater 14 (2002) 963. https://doi.org/10.1002/1521-4095.

Z. W. Seh, H. Wang, P. C. Hsu, Q. Zhang, W. Li, G. Zheng, H. Yao & Y. Cu, ‘‘Facile synthesis of Li2S–polypyrrole composite structures for highperformance Li2S cathodes’’, Energy Environ. Sci. 7 (2014) 672. https://doi.org/10.1039/C3EE43395A.

X. Huang, T. Qiu, X. Zhang, L. Wang, B. Luo & L. Wang, ‘‘Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries.’’, Materials Chemistry Frontiers 4 (2020) 2517. https://doi.org/10.1039/D0QM00303D.

R. M. Obodo, A. C. Nwanya, I. Ahmad, M. A. Kebede & F. I. Ezema, ‘‘Carbon Derivatives in Performance Improvement of Lithium-Ion Battery Electrodes, in Electrode Materials for Energy Storage & Conversion, Taylor & Francis Group, CRC Press, UK, 2021, pp. 23 – 33. https://doi.org/10.1201/9781003145585-2.

N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao & Y. Shi, ‘‘High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating’’, Chemical Communications 48 (2012) 4106. https://doi.org/10.1039/C2CC17912A.

F. Wu, J. T. Lee, E. Zhao, B. Zhang & G. Yushin, ‘‘Graphene-Li2S-carbon nanocomposite for lithium-sulfur batteries’’, ACS Nano 10 (2016) 1333. https://doi.org/10.1021/acsnano.5b06716.

H. Wu, Q. Tang, H. Fan, Z. Liu, A. Hu, S. Zhang, W. Deng & X. Chen, ‘‘Dual-Confined and Hierarchical-Porous Graphene /C/SiO2 Hollow Microspheres through Spray Drying Approach for Lithium-Sulfur Batteries’’, Electrochimica Acta 255 (2017) 179. https://doi.org/10.1016/j.electacta.2017.09.140.

R. M. Obodo, A. C. Nwanya, C. Iroegbu, I. Ahmad, A. B. C. Ekwealor, R. U. Osuji, M. Maaza & F. I. Ezema, ‘‘Transformation of GO to rGO due to 8.0 MeV carbon (C++) ions irradiation and characteristics performance on MnO2–NiO–ZnO@GO electrode’’, Int J Energy Res 44 2020 1. https://doi.org/10.1002/er.5416.

M. S. Park, J. S. Yu, K. J. Kim, G. Jeong, J. H. Kim, Y. N. Jo, U. Hwang, S. Kang, T. Woo & Y. J. Kim, ‘‘One-step synthesis of a sulfur-impregnated graphene cathode for lithium-sulfur batteries’’, Physical Chemistry & Chemical Physics 14 (2012) 6796. https://doi.org/10.1039/C2CP40727B.

R. Fang, S. Zhao, S. Pei, X. Qian, P. X. Hou, H. M. Cheng, C. Liu & F. Li, ‘‘Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure’’, ACS Nano 10 (2016) 8676. https://doi.org/10.1021/acsnano.6b04019.

C. Xu, Y. Wu, X. Zhao, X. Wang, G. Du, J. Zhang & J. Tu, ‘‘Sulfur/threedimensional graphene composite for high performance lithium-sulfur batteries’’, Journal of Power Sources 275 (2015) 22. https://doi.org/10.1016/j.jpowsour.2014.11.007.

C. Zu & A. Manthiram, ‘‘Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries.’’, Advanced Energy Materials 3 (2013) 1008 https://doi.org/10.1002/aenm.201201080.

Y. Zhang, Z. Gao, N. Song, J. He & X. Li, ‘‘Graphene and its derivatives in lithium–sulfur batteries.’’, Materials Today Energy 9 (2018) 319. https://doi.org/10.1016/j.mtener.2018.06.001.

R. M. Obodo, A. C. Nwanya, A. B. C. Ekwealor, I. Ahmad, T. Zhao, M. Maaza & F. Ezema, ‘‘Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films’’, Surfaces and Interfaces 16(2019) 114. https://doi.org/10.1016/j.surfin.2019.05.006.

E. Yoo, J. Kim, E. Hosono, H. Zhou & T. Kudo, ‘‘Large Reversible Li Storage of Graphene Nanosheet Families for Use’’, Nano Letters 8 (2008) 2277. https://doi.org/10.1021/nl800957b

M. M. Atabaki & R. Kovacevic, ‘‘Graphene composites as anode materials in lithium-ion batteries’’, Electron Mater Lett. 9 (2013) 133. https://doi.org/10.1007/s13391-012-2134-7.

N. Wang, N. Zhao, C. Shi, E. Liu, C. He, F. He & L. Ma, ‘‘In situ synthesized Li2S@ porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte’’, Electrochim. Acta 348 (2017) 256 https://doi.org/10.1016/j.electacta.2017.10.053.

Z. Li, S. Zhang, S. Terada, X. Ma, K. Ikeda, Y. Kamei, C. Zhang, K. Dokko & M. Watanabe, ‘‘Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte’’, ACS Appl. Mater. Interfaces 8 (2016) 16053. https://doi.org/10.1021/acsami.6b03736.

Y. Jin, B. Zhu, Z. Lu, N. Liu & J. Zhu, ‘‘Challenges and recent progress in the development of Si anodes for lithium-ion battery’’, Adv. Energy Mater 7 (2017) 1700715. https://doi.org/10.1002/aenm.201700715.

G. Q. Tan, R. Xu, Z. Y. Xing, Y. F. Yuan, J. J. Lu, G. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. P. Wu, Z. L. Jian, Y. R. R. Shahbazian-Yassar, D. J. Miller, L. A. Curtiss, X. L. Ji & K. Amine, ‘‘Burning lithium in CS2 for highperforming compact Li2S–graphene nanocapsules for Li–S batteries’’, Nat. Energy 2 (2017) 17090. https://doi.org/10.1038/nenergy.2017.90.

Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong & Y. Cui, ‘‘New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy’’, Nano Lett 10 (2010) 1486. https://doi.org/10.1021/nl100504q.

H. Jha, I. Buchberger, X. Cui, S. Meini & H. A. Gasteiger, ‘‘Li-S batteries with Li2S cathodes and Si/C anodes’’, J. Electro-chem. Soc. 162 (2015) A1829. https://doi.org/10.1149/2.0681509jes.

S. Wang, H. Chen, Z. Zhong, X. Hou, S. Hu & J. Wu, ‘‘Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell’’, Ionics 24 (2018) 3385. https://doi.org/10.1007/s11581-018-2493-7.s

Y. Chen, S. Lu, Y. Li, W. Qin & X. Wu, ‘‘A high-performance Li2S/MnO2 rechargeablebattery’’, Mater.Lett. 248 (2019) 157. https://doi.org/10.1016/j.matlet.2019.04.018.

M. Liu, Y. X. Ren, H. R. Jiang, C. Luo, F. Y. Kang & T. S. Zhao, ‘‘An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive’’, Nano Energy 40 (2017) 240. https://doi.org/10.1016/j.nanoen.2017.08.017.

J. Hassoun, B. Scrosati & Angew, ‘‘A high performance polymer tin sulfur lithium ion battery’’, Chem., Int. Ed 49 (2010) 2371. https://doi.org/10.1002/ange.200907324.

A. Manthiram, Y. Fu, S. H. Chung, C. Zu & Y. S. Su, ‘‘Rechargeable lithium - sulfur batteries’’, Chem Rev 114 (2014) 11751. https://doi.org/10.1021/cr500062v.

Y.Liu, C.Cui, Y.Liu, W.Liu&J.Wei, ‘‘ApplicationofMoS2inthecathode of lithium sulfur batteries.’’, RSC Adv 10 (2020) 7384. https://doi.org/10.1039/C9RA09769D.

M. Zong et al, ‘‘A cost and energy density competitive lithium-sulfur battery’’, Energy Storage Mater 41 (2021) 588. https://doi.org/10.1016/j.ensm.2021.06.037.

R. Soni et al, ‘‘Lithium-sulfur battery diagnostics through distribution of relaxation times analysis.’’, Energy Storage Mater 51 (2022) 97. https://doi.org/10.1016/j.ensm.2022.06.016.

C. Barchasz et al, ‘‘ Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification.’’, Anal Chem 84 (2012) 3973. https://doi.org/10.1021/ac2032244.

M. Hagen, D. Hanselmann, t. K. Ahlbrech, R. Maca, D. Gerber & J. Tübke, ‘‘Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cell’’, Adv Energy Mater 5 (2015) 1401986. https://doi.org/10.1002/aenm.201401986.

A. Fotouhi, D. J. Auger, L. O’Neill, T. Cleaver & S. Walus, ‘‘Lithiumsulfur battery technology readiness and applications- A Review’’, Energies 10 (2022) 1937. https://doi.org/10.3390/en10121937.

S. Dörfler et al, ‘‘Recent progress and emerging application areas for lithium–sulfur battery technology’’, Energy Technology 9 (2020) 2000694. https://doi.org/10.1002/ente.202000694.

T. Cleaver, P. Kovacik & M. Marinescu, ‘‘Commercializing lithium sulfur batteries: are we doing the right research’’, J. Electrochem Soc. 165 (2018) A6029. https://doi.org/10.1149/2.0071801jes.

J. Luo, R. Lee, J. Jin, Y. T. Weng, C. C. Fang & N. L. Wu, ‘‘ A dualfunctional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li–S batteries’’, Chem Commun 53 (2017) 963. https://doi.org/10.1039/C6CC09248A.

B. D. McCloskey, ‘‘Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes’’, J Phys Chem Lett 6 (2015) 4581. https://doi.org/10.1021/acs.jpclett.5b01814.

F.Jeschull, D.Brandell, K.Edströma&M.J.Lacey, ‘‘Astablegraphitenegative electrode for the lithium–sulfur battery’’, Chem Commun 51 (2015) 17100. https://doi.org/10.1039/C5CC06666B.

A. Krause, S. Dörfler, M. Piwko, F. M. Wisser, T. Jaumann, E. Ahrens, G. L, A. H, S. Schädlich, J. Grothe, A. Jeffery, M. Grube, J. Brückner, J. Martin, J. Eckert, S. Kaskel, T. Mikolajick & W. M. Weber, ‘‘ High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowirecarbon anodes for long cycling stability’’, Sci. Rep. 6 (2016) 27982. https://doi.org/10.1038/srep27982.

M. Piwko, T. Kuntze, S. Winkler, S. Straach, P. Hartel, H. Althues & S. Kaskel, ‘‘Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries.’’, J Power Sources 351 (2017) 183. https://doi.org/10.1016/j.jpowsour.2017.03.080.

R. Cao, W. Xu, D. Lv, J. Xiao & J. G. Zhang, ‘‘Anodes fo rechargeable lithium-sulfur batteries’’, Adv. Energy Mater 5 (2015) 1402273. https://doi.org/10.1002/aenm.201402273.

M. Ryohei, ‘‘Cathode materials for lithium-sulfur battery: a review’’, Journal of Solid State Electrochemistry 27 (2023) 813. https://doi.org/10.1007/s10008-023-05387-z.

J. Yan, X. Liu & B. Li, ‘‘ Capacity fade analysis of sulfur cathodes in lithium–sulfur batteries.’’, Adv Sci 3 (2016) 1600101. https://doi.org/10.1002/advs.201600101.

Y. J. Choi, Y. D. Chung, C. Baek, Y, K. W. Kim & H. J. Ahn, ‘‘ Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell.’’, J Power Sources 184 (2008) 548. https://doi.org/10.1016/j.jpowsour.2008.02.053.

X. Ji, K. T. Lee & L. F. Nazar, ‘‘A highly ordered nanostructured carbon sulphur cathode for lithium - sulphur batteries.’’, Nat Mater 8 (2009) 500. https://doi.org/10.1038/nmat2460.

X. Liu, J. Q. Huang, Q. Zhang & L. Mai, ‘‘Nanostructured metal oxides and sulfides for lithium–sulfur batteries.’’, Adv Mater 29 (2017) 1601759. https://doi.org/10.1002/adma.201601759.

J. He & A. Manthiram, ‘‘A review on the status and challenges of electrocatalysts in lithium-sulfur batteries’’, Energy Storage Mater 20 (2019) 55. https://doi.org/10.1016/j.ensm.2019.04.038.

K. Zhang & et al, ‘‘Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery’’, Electrochimica Acta 354 (2020) 136648. https://doi.org/10.1016/j.electacta.2020.136648.

M. Zheng et al, ‘‘Carbon nanotube-based materials for lithium–sulfur batteries.’’, J Mater Chem A 7 2019 17204. https://doi.org/10.1039/C9TA05347F.

J. Guo, Y. Xu & C. Wang, ‘‘Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries.’’, Nano Lett 11 (2011) 4288. https://doi.org/10.1021/nl202297p.

Published

2024-05-04

How to Cite

Review on performance optimization of Lithium Sulphur Batteries (LiSBs) using carbon based electrodes. (2024). Recent Advances in Natural Sciences, 2(1), 64. https://doi.org/10.61298/rans.2024.2.1.64

How to Cite

Review on performance optimization of Lithium Sulphur Batteries (LiSBs) using carbon based electrodes. (2024). Recent Advances in Natural Sciences, 2(1), 64. https://doi.org/10.61298/rans.2024.2.1.64