Proximate Analysis of *Telfairia Occidentalis* (Fluted Pumpkin) and *Telfairia Pedata* (Oyster Nut) Leaves Consumed in Katsina Metropolis: A Comparative Study

Yahaya Auwal a,1,∗, Magaji Ilu Barde a, Naziru Imam b, Abdulhamid Murtala a

aDepartment of Pure & Industrial Chemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yaradua University, Katsina, Nigeria

bDepartment of Industrial Chemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria.

1. INTRODUCTION

Vegetables refer to the consumable components of herbaceous plants that can be consumed either in their entirety or in portions, raw or cooked. They are commonly incorporated into main courses or salads. These vegetables can possess various flavours, ranging from aromatic and bitter to relatively neutral taste. Sunmonu et al. [1] reported that these ingredients are commonly consumed in the dietary habits of the typical Nigerian population and offer significant quantities of essential minerals. Although leafy vegetables primarily consist of water, they serve as a rich source of minerals, vitamins, and phytochemicals, resembling a comprehensive natural repository. The *Telfairia* genus, classified under the Cucurbitaceae family, encompasses two distinct species found in Africa: *Telfairia occidentalis* Hooker and *Telfairia pedata*, originating from West Africa and East Africa, respectively [2]. Due to its significant value, *Telfairia Occidentalis*, a herbaceous perennial plant, is cultivated annually in some areas of West Africa [3]. *Telfairia occidentalis* is widely cultivated in the southern region of Nigeria, particularly by the Ig-
Telfairia Occidentalis has gained significant importance in its dietary practices and is now a prevalent component in regional households [2]. According to Kayode et al. [4], traditional medicine employs this substance to enhance blood circulation, bolster the immune system, and alleviate digestive issues and convulsions. Multiple authors have extensively documented the antioxidant property of Telfairia Occidentalis [5, 6]. From a nutritional standpoint, this particular leafy vegetable possesses a significant abundance of minerals, including iron, potassium, sodium, phosphorous, calcium, magnesium, and certain essential amino acids [7].

Additionally, it contains notable phytochemicals such as tannins, saponins, flavonoids, and phenolics [4]. Telfairia pedata, commonly known as oyster nut, is a perennial plant cultivated in Central and East Africa. According to Alegbejo [8], the plant in question yields seeds characterised by their significant size, elongated shape, and flat structure. Additionally, when subjected to roasting, these seeds exhibit a flavour reminiscent of almonds. Telfairia pedata is a native forest food plant in the Uluguru North and West Usambara Mountain regions, known for providing edible nuts and seeds [9]. The seeds of Telfairia pedata are utilised in tropical East Africa for oil production and are subjected to roasting and consumption.

Comparative analysis of the nutritional composition of Cucurbitaceae leaves within a specific region is crucial, as it is a key indicator of potential differences that may arise from climatic factors and soil composition. The nutritional value of Telfairia Occidentalis leaves has been reported in the literature and is widely consumed throughout sub-Saharan Africa. However, the potential of Telfairia pedata leaves has not been comparatively investigated. To fill this knowledge gap, there is a need to evaluate the proximate composition of Telfairia Occidentalis and Telfairia pedata leaves. This will not only increase the understanding of the nutritional content of these leaves but also contribute to the proximate composition database of Cucurbitaceae leaves.

2. METHODOLOGY

Two different types of freshly harvested Telfairia Hooker F. leaves were collected from Katsina City, Nigeria, namely Telfairia occidentalis and Telfairia pedata. The leaves were carefully placed in a clean polythene bag for packaging. The leaf samples underwent authentication and identification at the Herbarium Unit of the Department of Biology, Umaru Musa Yar’adua University, located in Katsina, Nigeria. Before commencing the study, the leaves were subjected to a comprehensive purification procedure, which entailed using water to eradicate any residual soil particles. The leaves were thoroughly washed using distilled water and subsequently allowed to undergo a natural drying process for three days within a sheltered environment. Subsequently, the leaves were ground into a fine powder using a mortar and pestle, and the resulting powder was then filtered through a mesh with a pore size of 20 μm. The acquired powder was afterward placed in a plastic container in anticipation of the proximate analysis. In order to ascertain the moisture content, the investigation utilised leaf samples that were freshly gathered. The proximate analysis was performed in accordance with the protocol specified by the Association of Official Analytical Chemists (AOAC) [10].

3. RESULTS AND DISCUSSION

The proximate composition of the two leaves is presented in Table 3. In terms of moisture content, the result shows a high percentage of mean moisture content in both leaves, with Telfairia pedata slightly higher than Telfairia occidentalis. The relatively higher moisture content in the leaves suggests that the vegetables may not be stored for long due to higher water activity. Higher moisture content helps maintain the cell’s protoplasmic content [11]. Additionally, it facilitates enhanced functionality of hydrophilic enzymes and coenzymes essential for the metabolic processes of leafy green vegetables [12]. Nevertheless, the elevated moisture content could give rise to a quality issue, as the samples may exhibit increased vulnerability to bacterial spoilage throughout the storage period [13].

Comparatively, from the present analysis, Telfairia occidentalis leaf is more susceptible to deterioration by bacteria on storage and easily digestible on consumption than the Telfairia pedata leaf because it contains higher moisture content (Figure 1). Onimakinde et al. [14] reported 8.75% of moisture content in fluted pumpkins, similar but slightly less than in this study. This may be attributable to the plant’s geographical location and the research’s analytical accuracy. However, the 3.09±0.93 percentage moisture content of Telfairia pedata (Oyster Nut) seeds obtained by Mwakasege et al. [15] is about five-fold less than what was obtained in this study. The result shows that the leaves significantly differ in percentage moisture content at (P < 0.05).

Similarly, relatively high ash content values of 13.30 ± 0.31 and 8.60 ±0.20 for Telfairia pedata and Telfairia Occidentalis leaves, respectively, were recorded. Higher ash content is an indication of abundant mineral elements in the leaves. Comparatively (Figure 1), from the present study, Telfairia pedata leaf contained higher ash content than Telfairia Occidentalis leaf, indicating that the former may likely have more abundant mineral elements than the latter. The result of the ash content of Telfairia Occidentalis leaf obtained in this study agreed with the 8.3% ash content of Fluted pumpkin leaf reported [16]. Additionally, the seeds of Telfairia pedata have relatively high ash content compared with 2.57± 0.04% obtained by Kim et al. [17]. The mean ash content of the two leaves shows a statistically significant dif-
The mean crude protein content of the leaves (Table 3) was significantly different at \(P < 0.05 \) and generally higher, probably due to favourable soil fertility and environmental condition. The higher percentage crude protein content of \textit{Telfairia Occidentalis} leaf (22.45 ± 0.50) is in line with (21.14 %) and (22.97 %) reported by Refs. [19] and [14], respectively. Also, the seed of \textit{Telfairia pedata} was found to have contained significantly higher crude protein (29.08±1.43%) obtained by Kim \textit{et al.} [17] compared with (16.04±0.03%) obtained in this study. Based on findings by Pearson [20], plants that derive more than 12% of their calorific value from protein are classified as viable protein sources. Therefore, the utilisation of curcurbitaceae leaves in this study suggests that they could be an easily accessible and cost-effective protein source for maintaining regular bodily functions. The result indicates that the \textit{Telfairia Occidentalis} leaf had more protein than the \textit{Telfairia pedata} leaf, probably due to favourable soil fertility and environmental condition.

The lipid content of the leaves was generally low in the studied leaves but higher in the \textit{Telfairia occidentalis} leaf. Adeyeye & Omaloyo [16] reported a similar result (3.46%) of the lipid content of the \textit{Telfairia occidentalis} leaf. However, the lipid content (61.20±1.20 %) of the \textit{Telfairia Pedata} seeds obtained by Kim \textit{et al.} [17] is excessively higher than the leaf compared to the present research. The findings suggest that the examined leaves possess health benefits, as their consumption does not appear to contribute to obesity. The mean crude fibre content in (Table 3) of the leaves was significantly different at \(P < 0.05 \) and relatively higher. The mean crude fibre of the leaves studied were 19.50±0.51 and 14.51±0.34 for \textit{Telfairia pedata} and \textit{Telfairia occidentalis} leaves, respectively. The crude fibre value of the \textit{Telfairia Occidentalis} leaf agrees with the result (15.40±0.37) obtained [14]. The crude fibre of \textit{Telfairia Pedata} leaf obtained in this research is excessively higher compared with (1.00±0.13%) obtained by Kim \textit{et al.} [17] in seeds of \textit{Telfairia pedata} (Oyster Nut). This shows that the seeds are generally a poor source of crude fibre. The consumption of dietary fibres has been associated with a reduction in serum cholesterol levels as well as a decreased risk of various health conditions such as coronary heart disease, hypertension, diabetes, colon cancer, and breast cancer [21–23]. From the present analysis, the \textit{Telfairia Pedata} leaf contained a higher percentage of fibre content than the \textit{Telfairia Oc- cidentalis} leaf. However, both the leaves analysed could be a good source of dietary fibre, which could be responsible for the higher carbohydrate content of the leaves.

Carbohydrate content (Table 3) is generally high in all the leaves, and the mean results were not significantly different \((P < 0.05) \). The percentage carbohydrate content (49.44±0.55) of \textit{Telfairia Occidentalis} leaf obtained in the present study can be compared favourably with the (51.40 %) carbohydrate contents of \textit{Telfairia Occidentalis} (flutted pumpkin) leaf reported by Ommimakinde [14]. However, the seeds of \textit{Telfairia pedata} (Oyster Nut) contained low carbohydrate content (3.06 %), according to the findings of Kim \textit{et al.} [17]. In retrospect, from this research, the leaf of \textit{Telfairia Pedata} contained an appreciable percentage of carbohydrates (49.23±0.79). The elevated levels of carbohydrates found in the leaves indicate that they contribute substantially to the overall energy content of the food materials. The primary role of carbohydrates is to serve as a source of fuel and energy for the human body, supporting its daily activities and physical exertion.

\textbf{4. CONCLUSION}

In this comparative research, the proximate composition of \textit{Telfairia occidentalis} and \textit{Telfairia pedata} leaves obtained from Katsina metropolis, Nigeria, was carried out, and the results revealed interesting findings. Both leaves portrayed high moisture content, indicating they may not be suitable for prolonged storage because of high water activity. \textit{Telfairia Occidentalis} leaves with higher moisture content will be more susceptible to bacterial spoilage during storage than \textit{Telfairia pedata} leaves. Contrarily, \textit{Telfairia pedata} leaves show higher ash content, indicating a potentially greater abundance of minerals than \textit{Telfairia Occidentalis} leaves. Regarding protein content, \textit{Telfairia Occidentalis} leaves showed significantly higher levels, thus a valuable source of protein suitable for body functions. Although the lipid content of the leaves was relatively low, \textit{Telfairia Occidentalis} leaves contained higher amounts. This suggests that the leaves health-wise are not likely to contribute to obesity when consumed. Furthermore, the crude fibre was significantly higher in \textit{Telfairia Pedata} leaves than in \textit{Telfairia Occidentalis} leaves. The leaves are therefore considered good sources of dietary fibre, which may be linked to their higher carbohydrate content. The carbohydrate content of the leaves was generally high, indicating a significant energy source. The research findings provide valuable insights for understanding these leaves’ nutritional value and potential applications, thereby contributing to the broader knowledge of these valuable curcurbitaceae resources. Further research is recommended to determine the anti-nutrients, minerals and amino acids, and phytochemicals of the leaves for potential nutritive and therapeutic applications.

\textbf{References}

