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A B S T R A C T

Methods for integrating stiff initial value problems are required to be A-stable. Of great
interest are A-stable methods whose Jacobian matrices have their eigenvalues close to
the imaginary axis of the complex plane. This class of A-stable methods are very rare.
This paper is on the development of a new family of A-stable hybrid block method
whose Jacobian matrices possess eigenvalues on the imaginary of the complex plane
via interpolation and collocation techniques. The family of methods developed herein
are A-stable for order p ≤ 18. Numerical solutions generated by the new method are
compared with existing methods in the literature. The numerical results show that the
new class of methods are more efficient and accurate.
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1. INTRODUCTION
Physical phenomena are often modelled in science and engineer-
ing using differential equations, some of these physical phenom-
ena includes: the determination of motion of planetary bodies,
change in population size of species over a period of time and
the rate of decay of radioactive elements. These models often
give rise to differential equations, most of which are insoluble us-
ing analytic techniques. Hence the need for numerical methods.
Stiff equations are a subset of differential equations that require
special numerical methods due to their inherent instability unless
very small step sizes are used.

Analytical solutions for stiff problems are often challenging
or impossible to obtain, making numerical methods crucial for
solving them. Stiff problems occurs when one or more compo-
nents of solution of a differential equations decay much more
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rapidly than others. Stiffness also occur when stability require-
ment rather than accuracy constrains the step-length for numer-
ical integration. Stiffness is when the eigen values of the jaco-
bian of the system of ordinary differential equations (ODEs) dif-
fers greatly in magnitude Ref. [1]. Jacobian matrices need to
have eigenvalues close to the imaginary axis because by ensur-
ing that the jacocian eigenvalues are close to the imaginary axis,
these methods maintain stability while accurately capturing the
behavior of the system Ref. [2]. and this type of methods are
rare and usually implicit. In general, eigenvalues of a matrix
are not typically located on the imaginary axis of the complex
plane. They can be real or complex, but not necessarily on the
imaginary axis. A-stable methods are designed to be stable for
certain types of equations, and having eigenvalues on the imag-
inary axis may not be consistent with these properties. A good
numerical method is that which is accurate,fast in computation
and produces minimum/low error.

This study is on the development of new class of hybrid-block
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formulae that are stable and suitable for solving stiff system of
Initial Value Problems (IVP) in Ordinary Differential equations
(ODEs) of the form:

y′ = f (t , y), y(a) = η,
f : ℜ×ℜm →ℜm, y : ℜ→ ℜm t ∈ [a, b]. (1)

The development of methods for solving equation (1) is still
receiving research attention as evident in literature. Ref. [3] pre-
sented a class of extended backward differentiation formular suit-
able for the approximation of stiff systems of 1st order ordinary
differential equations. The family of method presented herein
was L-stable up to order 4. It has the advantages of ease of chang-
ing order and size, highly stable and relatively low computational
effort per step. Also Ref. [4] focussed on second derivative Mul-
tistepmethods for stiff systems. Since stiff systems are character-
ized by rapid variations in their solutions and specialised numer-
ical methods are required to handle them effectively, the method
developed in Ref. [4] aimed at enhancing accuracy and stability
of numerical solutions for stiff IVPs. The introduction of a family
of methods in Ref. [5] designed for solving stiff IVPs in ODEs
are inherently parallel and can be distributed across parallel pro-
cessors. This new restructured methods are zero stable apriori.
They exhibit A-stablilty for block sizes up to four and are well
suited for integration of stiff IVPs on parallel computers. Error
analysis and stability bounds were discussed in Ref. [6]. Author
investigated the accuracy and robustness of numerical integra-
tion schemes, emphasising the need for stable methods to ensure
reliable results. Its findings has continue to guide researchers
in designing efficient and accurate stiff ODEs solvers. Ref. [7]
delved into various classes of step by step methods suitable for
automatic numerical integration of general problems. Also, it
covers the derivation of methods, the theory of error and con-
vergence and practical implementation on a computer. In Ref.
[8] a diagonally implicit Runge Kutta methods that approximate
solutions to ODEs by implicitly solving a system of equation at
each stage was developed. This family of methods developed
herein are characterised by their stage order, accuracy, L-stability
and embedded dense-output capabilities. Also Ref. [9] derived
a block of diagonally implicit backward differentiation method
with two off step points. This proposedmethod computes two ap-
proximate solution values concurrently for every iteration and it
was found to be zero stable, A-stable and suitable for solving first
order stiff IVPs. While Ref. [10] proposed a novel higher-order
hybrid super class backward differentiation formula for simulat-
ing stiff IVPs of ODEs. The new scheme approximates the val-
ues of two points and two off step points per integration step.
and also incorporate a stability control parameter by varying the
free parameter p within interval (−1, 1), different zero stable and
A-stable schemes can be obtained.
The core characteristic of stiffness lies in the fact that the solu-

tion components of IVPs to be computed exhibits different vari-
ations, yet it is accompanied by rapidly damped perturbations.
Formulae that incorporates function evaluations at intra step

points are known to have higher order A-stable members com-
pared to classical Linear Multistep Methods. Methods that allow
intra-step computations are known as Hybrid Refs. [11–13]. The
term ’hybrid’ was coined in Ref. [13] since these methods while

preserving certain Linear Multistep Methods (LMM) character-
istics, also share with Runge-Kutta Methods (RKM)the ability
to utilize data from intra-step points other than the primary step
points. Linear MultistepMethods can be composed to form what
is known in literature as block methods. Block methods have
the characteristics of generating approximate solution at differ-
ent points simultaneously.
A general r-block , k-point block method is a matrix finite dif-

ference equation of the form

A0Ym =
k∑
i=1

AiYm−i + h
k∑
i=0

BiFm−i, (2)

where A0 = Ik , A′is and B
′
is are coefficient in k×k matrix form

and m = 0, 1, · · · represents the member of blocks, n = mk is the
first number of the mth block and k is the proposed block size.

Ym = (yn+1, yn+2, · · · , yn+k )T , (3)

Fm = (fn+1, fn+2, · · · , fn+k )T , (4)

Ym−i = (yn−ik+1, yn−ik+2, · · · , yn−ik+k )T , i = 1, 2, · · · , k , (5)

Fm−i = (fn−ik+1, fn−ik+2, · · · , fn−ik+k )T , i = 1, 2, · · · , k . (6)

For k = 1, equation (2) reduces to the classical r-step LMM. For
B0 = 0, the block method equation (2) is explicit, otherwise it
is implicit. A strictly lower triangular matrix B0, equation (2) is
also explicit. When r = 1 in equation (2) results into one block
k-point method.
A one block method is defined by the recurrence equation

given as:

Yn+1 = AYn + hBF(Yn) + hDF(Yn+1), (7)

where A, B and D are k × k matrices. One-Block method of
equation (7) is suitable for parallel implementation, if the matrix
D is diagonal. Blockmethods of different form developed in Ref.
[1, 14, 15] are suitable for solving equation (1).
In Ref. [16], a new two-step hybrid block method (IM-

BLOCK) for the numerical integration of ordinary differential
initial value systems was presented. The method is obtained
when the two intermediate points and the approximation of the
real solution with a sufficient polynomial and the collocation
conditions are determined. The proposed method has an alge-
braic order of tenth convergence and is A-stable.
Ref. [17] developed a class of A(α) stable linear multistep

methods for solving stiff problems. Themethods are A-stable for
k ≤ 3 and rigidly stable for 4 ≤ k ≤ 6 . They solved the resulting
nonlinear system using the Newton-Raphson formula. Also Ref.
[18] focused on the derivation of the Sixth Partial Hybrid Block
Method (OSHBM) for the general solution of first-order initial
value problems of ordinary differential equations. The new pro-
posed method was derived using the Chebyshev polynomial col-
location and interpolation approach, which is an approximate so-
lution to obtain a continuous linear multistep method at some se-
lected points, which was analyzed in some off line hybrid linear
multistep methods. The main features of the proposed method
were investigated and it was found that the method is zero-stable,
consistent and convergent but it has a setback of low order. The
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OSHBM has an order of p ≤ 4. Then Ref. [19] developed 3-
step hybrid Adams-type method (HATM) to solve a first-order
ordinary differential equation (ODE).

Diagrams derived at both on-line and off-line points using
multi-step collocation methods, and some points were also ana-
lyzed using the Block Adams-type method and Adams Moulton
method, respectively. The highest ranked method was selected
as the corrector. The merger was valid and effective. Numeri-
cal experiments were performed and it was found that Adams-
type hybrid methods perform better than the traditional Adams-
Moulton method but it has a setback of low order. Ref. [16] pre-
sented a new two-step hybrid block method (IMBLOCK) for the
numerical integration of ordinary differential initial value sys-
tems. The method is obtained when the two intermediate points
and the approximation of the real solution with a sufficient poly-
nomial and the collocation conditions are determined. The pro-
posed method has an algebraic order of tenth convergence and
is A-stable. Also Ref. [20] derive a block of diagonally implicit
backward differentiationmethod for solving first-order stiff IVPs
in which two approximate solution values are computed concur-
rently for each iteration at two off step points. The new method
was found to be zero stable, A-stable and even perform better
in terms of accuracy when compared to other methods that was
reviewed. Ref. [21] proposed a novel block of higher-order hy-
brid super class backward differentiation formula (HSBBDF) for
simulating stiff initial value problems (IVPs) of ordinary differ-
ential equations (ODEs).This family of method belongs to the
super class of BDFs and includes a stability control parameter.
By varying the value of the free parameter within a certain inter-
val, different zero-stable and A-stable schemes can be obtained.
The specific choice of order results in a zero- stable and A-stable
method capable of solving stiff IVPs of ODEs.

This research aimed at developing a new Family of hybrid
block method Known as Modified Continous Hybrid-Type For-
mulae(MCHTF) by the method of continous interpolation (a
point where the solution of a function is evaluated) and collo-
cation ( a point where the derivative of a function is evaluated)
with very high order and also possesses zero and A- stable prop-
erties that are required to solve a stiff IVP of ODEs. The unique-
ness of the method developed herein is that it’s stability are on
the imaginary axis of the complex plain hence they are perfectly
Stable and can solve most stiff problems. High order methods
ensure that the pertubations of the solution do not diverge away
over time. They are known to be efficient, accurate and can solve
wide range of problems and are less sensitive to errors

2. METHOD FORMULATION
Consider a continuous hybrid method of the form

2k∑
j=0

βi,jyn+vj − hβ2k+1fn+vi−1 = hfn+vi ,

vi =
i
2
, i = 1, 2, · · · , 2k , (8)

on an intra-step points t0, t 1
2
, t1, t 2k−1

2
, tk , where yn+vi is the dis-

crete approximation of the analytic solution y(tn + vi) at tn+vi ,
fn+vi = f (tn + vi, yn + vi), h is the given stepsize and the βi,js are
coefficients that are determined through the intra-step point us-

ing interpolation and collocation approach. Themethod equation
(8) can be compose to give block method. Thus, the method in
equation (8) is obtained by approximating a basis polynomial of
the form:

y(t) =
2k+1∑
j=0

βj

( t − tn
h

)j
, (9)

y′(t) =
1
h

2k+1∑
j=0

jβj
( t − tn

h

)j−1
. (10)

Since the normalization of the coefficients in equation (8) oc-
cur in the first derivative part, the basis polynomial in equation
(10) shall be used to derived the continuous method equation (8)
through the means of interpolating y(t) at point tn+vj and collo-
cating y′(t) at tn+vi , i, j = 0(1)k . That is

y(tn+vj ) = yn+vj ; j = 0, 1, 2, 3, 2k
y′(tn+vi ) = y

′
n+vi ; i =, 1, 2, 3, · · · , 2k ,

y′(tn+vi−1 ) = y′n+vi−1
; i =, 1, 2, 3, 2k . (11)

This leads to a system of 2k + 2 linear equations given in a com-
pact form as:

1 0 0 0 · · · 0 0
1 v1 v2

1 v3
1 · · · v2k

1 v2k+1
1

1 v2 v2
2 v3

2 · · · v2k
2 v2k+1

2
1 v3 v2

3 v3
3 · · · v2k

3 v2k+1
3

...
...

1 v2k v2
2k v3

2k · · · v2k
2k v2k+1

2k
0 1 2vi−1 3v2

i−1 · · · 2kv2k−1
i−1 (2k + 1)v2k

1



×



β0
β1
β2
β3
...
β2k
β2k+1


=



yn
yn+v1

yn+v2

yn+v3

...
yn+v2k

hfn+vi−1


. (12)

The system of equation (12) is used to determine the coefficients
βi, j, for continuous methods:

2k∑
j=0

βi,jyn+vj − hβ2k+1y′(tn+vi−1 ) = hy′(tn+vi ), i = 1, 2, · · · , 2k ,

(13)

for i = 1, 2, · · · , 2k in equation (7) gives the hybrid-block for-
mula. The new continous schemes equation (8) has the character-
istics of Runge-Kutta method of being self-starting. The method
equation (8) is composed into a one block method of the form:

A1Yn+1 = A0Yn + h (B1Fn+1 + B0Fn) , (14)

where the k × k matrices coefficient are defined as:



4 Kona & Muka / Recent Advances in Natural Sciences 2 (2024) 74

B1 =



1 0 0 · · · 0 0

β2,2k+1 1 0
. . . 0 0

0 β3,2k+1 1
. . .

... 0

0 0 β3,2k+1
. . . 0 0

...
...

. . . 1 0

0 0 0
. . . β2k ,2k+1 1


,

B0 =



0 0 0 · · · 0 β1,2k+1
0 0 0 · · · 0 0

0 0 0 · · ·
... 0

0 0 0 · · · 0 0
...

. . . 0 0
0 0 0 · · · 0 0


, (15)

A1 =



β1,1 β1,2 · · · β1,2k
β2,1 β2,2 · · · β2,2k
...

...
...

...
...

...
β2k−1,1 β2k−1,2 · · · β2k−1,2k
β2k ,1 β2k ,2 · · · β2k ,2k


,

A0 =



0 0 0 · · · 0 β1,0
0 0 0 · · · 0 β2,0

0 0 0 · · ·
...

...
...

. . . 0 β2k−1,0
0 0 0 · · · 0 β2k ,0


, (16)

and the block solution output and its derivative are, respectively

Yn+1 =
[
yn+v1 , yn+v2 , · · · , yn+v2k

]T ,
Fn+1 =

[
fn+v−1, fn+v2 , · · · , fn+v2k

]T . (17)

2.1. ONE BLOCK SIX-POINTS METHOD
The intra-step points for k = 3 in equation (14) are
t0, t 1

2
, t1, t 3

2
, t2, t 5

2
, t3 and the resultant continuous schemes is given

as

−
23yn
20
−

17
30
yn+ 1

2
+

5yn+1

2
−

10
9
yn+ 3

2
+

5yn+2

12
−

1
10
yn+ 5

2
+
yn+3

90

=
h
6

(
fn + 6fn+ 1

2

)
,

−
yn
15
−

137
75

yn+ 1
2
+

5yn+1

6
+

4
3
yn+ 3

2
−
yn+2

3
+

1
15
yn+ 5

2
−
yn+3

150

=
h
5

(
5fn+1 + 2fn+ 1

2

)
,

yn
45
−

2
5
yn+ 1

2
−

19yn+1

6
+

8
3
yn+ 3

2
+ yn+2 −

2
15
yn+ 5

2
+
yn+3

90

=
h
3

(
3fn+1 + 4fn+ 3

2

)
,

19yn+2

8
+

1
10
yn+ 1

2
− 2yn+ 3

2
+

3
10
yn+ 5

2
−

3yn+1

4
−
yn+3

60
−

yn
120

=
h
4

(
4fn+ 3

2
+ 3fn+2

)
,

(18)

+
yn

150
−

1
15
yn+ 1

2
+
yn+1

3
−

4
3
yn+ 3

2
−

5yn+2

6
+

137
75

yn+ 5
2
+
yn+3

15

=
h
5

(
5fn+2 + 2fn+ 5

2

)
,

−
yn
90
+

1
10
yn+ 1

2
−

5yn+1

12
+

10
9
yn+ 3

2
−

5yn+2

2
+

17
30
yn+ 5

2
+

23yn+3

20

=
h
6

(
6fn+ 5

2
+ fn+3

)
, (19)

which form the modified continous hybrid-type formula in equa-
tion (14) with coefficients given as:

A0 =



0 0 0 0 0 − 23
20

0 0 0 0 0 − 1
15

0 0 0 0 0 1
45

0 0 0 0 0 − 1
120

0 0 0 0 0 1
150

0 0 0 0 0 − 1
90


,

A1 =



− 17
30

5
2 − 10

9
5

12 − 1
10

1
90

− 137
75

5
6

4
3 − 1

3
1
15 − 1

150
− 2

5 − 19
6

8
3 1 − 2

15
1
90

1
10 − 3

4 −2 19
8

3
10 − 1

60
− 1

15
1
3 − 4

3 − 5
6

137
75

1
15

1
10 − 5

12
10
9 − 5

2
17
30

23
20


,

B0 =



0 0 0 0 0 1
6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

B1 =



1 0 0 0 0 0
2
5 1 0 0 0 0
0 1 4

3 0 0 0
0 0 1 3

4 0 0
0 0 0 1 2

5 0
0 0 0 0 1 1

6


. (20)

2.1.1. Coefficients of one block eight-points method
The coefficients of one block eight-points method are given be-
low:

A0 =



0 0 0 0 0 0 0 − 1041
1120

0 0 0 0 0 0 0 − 1
28

0 0 0 0 0 0 0 1
84

0 0 0 0 0 0 0 − 1
336

0 0 0 0 0 0 0 1
700

0 0 0 0 0 0 0 − 1
840

0 0 0 0 0 0 0 1
588

0 0 0 0 0 0 0 − 1
224


,

A1 =



− 83
70

7
2 − 7

3
35
24 − 7

10
7

30 − 1
21

1
224

− 363
245

1
10 2 − 5

6
1
3 − 1

10
2

105 − 1
588

− 2
7 − 39

10
11
5

5
2 − 2

3
1
6 − 1

35
1

420
1
21 − 1

2 − 29
10

5
2 1 − 1

6
1
42 − 1

560
− 2

105
2
15 − 4

5 −2 58
25

2
5 − 4

105
1

420
1
70 − 1

12
1
3 − 5

4 − 11
10

39
20

1
7 − 1

168
− 2

105
1
10 − 1

3
5
6 −2 − 1

10
363
245

1
28

1
21 − 7

30
7
10 − 35

24
7
3 − 7

2
83
70

1041
1120


,
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B0 =



0 0 0 0 0 0 0 1
8

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

B1 =



1 0 0 0 0 0 0 0
2
7 1 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 0 1 5

4 0 0 0 0
0 0 0 1 4

5 0 0 0
0 0 0 0 1 1

2 0 0
0 0 0 0 0 1 2

7 0
0 0 0 0 0 0 1 1

8


. (21)

2.1.2. Coefficients of one block ten-points method

A1 =



− 2089
1260

9
2 −4 7

2 − 63
25

7
5 − 4

7
9

56 − 1
36

1
450

− 7129
5670

61
140

8
3 − 14

9
14
15 − 7

15
8

45 − 1
21

1
126 − 1

1620
− 2

9 − 621
140

404
315

14
3 − 28

15
7
9 − 4

15
1

15
2

189
1

1260
1

36 − 3
8 − 739

210
133
60

21
10 − 7

12
1
6 − 3

80
1

180 − 1
2520

− 1
126

1
14 − 4

7 − 41
15

12
5 1 − 4

21
1

28 − 1
210

1
3150

1
252 − 5

168
10
63 − 5

6 −2 41
18

10
21 − 5

84
5

756 − 1
2520

− 1
315

3
140 − 2

21
1
3 − 6

5 − 19
15

1478
735

3
14 − 1

63
1

1260
1

252 − 1
40

1
10 − 7

24
7

10 − 7
4 − 101

210
1863
1120

1
12 − 1

360
− 1

126
1

21 − 8
45

7
15 − 14

15
14
9 − 8

3
61
140

7129
5670

1
45

1
36 − 9

56
4
7 − 7

5
63
25 − 7

2 4 − 9
2

2089
1260

9901
12600



, (22)

A0 =



0 0 0 0 0 0 0 0 0 − 9901
12600

0 0 0 0 0 0 0 0 0 − 1
45

0 0 0 0 0 0 0 0 0 1
135

0 0 0 0 0 0 0 0 0 − 1
720

0 0 0 0 0 0 0 0 0 1
2100

0 0 0 0 0 0 0 0 0 − 1
3780

0 0 0 0 0 0 0 0 0 1
4410

0 0 0 0 0 0 0 0 0 − 1
3360

0 0 0 0 0 0 0 0 0 − 1
126

0 0 0 0 0 0 0 0 0 1
36



, (23)

B1 =



1 0 0 0 0 0 0 0 0 0
2
9 1 0 0 0 0 0 0 0 0
0 1 8

3 0 0 0 0 0 0 0
0 0 1 7

4 0 0 0 0 0 0
0 0 0 1 6

5 0 0 0 0 0
0 0 0 0 1 5

6 0 0 0 0
0 0 0 0 0 1 4

7 0 0 0
0 0 0 0 0 0 1 3

8 0 0
0 0 0 0 0 0 0 1 2

9 0
0 0 0 0 0 0 0 0 1 1

10



,

B0 =



0 0 0 0 0 0 0 0 0 1
10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



. (24)

3. STABILITY ANALYSIS
The constituent hybrid linear multistep methods that form the
equation (8) are obtained from:

2k∑
j=0

βi,jy(t + vjh) − h
(
βi,2k+1y′(t + vi−1h) − y′(t + vih)

)
= C2k+2h2k+2y(2k+2)(t) + O

(
h2k+3

)
. (25)

Linear difference operator L[y(t); h] with equation (8) given
by

L[y(t); h] =
2k∑
j=0

βi,jy(t + vjh)

− h
(
βi,2k+1y′(t + vi−1h) − y′(t + vih)

)
, (26)

where y(t) is assumed to be sufficiently differentiable function
on [a, b]. The equation (26) provides the local truncation error
(lte) of the hybrid block scheme in equation (14). By expanding
via Taylor series the term y′(t + vih) and y(t + jh) about t and
collecting terms by the power of h, equation (26) becomes:

L(y(t); h) = C̄0y(t) + C̄1hy′(t) + · · · + C̄phpyp(t) + · · · , (27)

where

C̄0 =

2k∑
j=0

βi,j, C̄1 =

2k∑
j=0

jβi,j − βi,2k+1 − 1,

C̄2 =

2k∑
j=0

j2

(2)!
βi,j − (vi−1)βi,2k+1 − vi,

...

C̄p =
(vi)p

p!
−

2k∑
j=0

jp

(p)!
βi,j −

jp−1

(p − 1)!
(
(vi−1)βi,2k+1 + vi

)
,

p ≥ 1, k ≥ 1, (28)

with C̄p =
[
C1,p,C2,p, · · · ,C2k ,p

]T
.

The hybrid scheme of equation (8) is of order p, if

C̄j = 0, j = 0(1)p, C̄p+1 , 0, (29)

where C̄p+1 , 0 is the error constant (EC) and its principal local
truncation error (LTE) is

LTE = C̄p+1hp+1Y p+1 + O(hp+2). (30)

The error constants for k = 3, 4, 5 are given below:

C6 =



1
43008
− 1

107520
1

107520
− 1

143360
1

107520
− 1

43008


, (31)
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C8 =



1
368640
− 1

1290240
1

1290240
− 1

2580480
1

3225600
− 1

2580480
1

1290240
− 1

368640


, (32)

C10 =



1
2703360
− 1

12165120
1

12165120
− 1

32440320
1

56770560
− 1

68124672
1

56770560
− 1

32440320
1

12165120
− 1

2703360



. (33)

Lemma 1. Suppose the sequence {di+1} satisfies the conditions

di+1 ≤ (1 + αhi+1) di + σi+1hi+1; i = 0, 1, (34)

with the sequences {di+1}, {σi+1}, {hi+1} and α are non-negative
integer, then

di+1 ≤

d0 +

i∑
j=0

σjhj

 exp

α i∑
r=0

hr

 . (35)

Theorem 3.1. Suppose the role of round-off error is negligible
and the hybrid block scheme in equation (14) satisfies the Lips-
chitz condition

∥ F(t , y) − F(t , ȳ) ∥∞≤ L ∥ y − ȳ ∥∞, (36)

for all t ∈ [t0,T ] and y, ȳ, ∈ C. The hybrid block methods in
equation (14) is convergent of order p = 2k+1, if is ∥ A−1A0 ∥∞=

1 and consistent holds.

Proof.
Due to one block method in equation (14), the local truncation
error is given as:

τn+1(h) = AȲn+1 − hBF̄n+1 + A0Ȳn − hB0F̄n, (37)

where

Yn+1 = (yn+ 1
2
, yn+1, yn+ 3

2
, · · · , yn+k )T ,

Fn+1 = (fn+ 1
2
, fn+1, fn+ 3

2
, · · · , fn+k )T , (38)

is the block of solution and function values. By subtracting equa-
tion (14) from (37) gives the global truncation error

εn+1 = Ȳn+1 − Yn+1 = A−1τn+1(h) − A−1A0(Ȳn − Yn)

+ hA−1B(F̄n+1 − Fn+1) + hA−1B0(F̄n − Fn). (39)

For proper notation, let ∥ (A−1B ∥∞= φ, ∥ A−1B̄0 ∥∞= ϑ, e0 = 0,
dn+1 = max0≤j≤n ∥ εn+1 ∥∞, n = 0(1)Wt .
Thus, since the one-block method in equation (14) is pre-

consistent that is
(
∥ A−1A0 ∥∞= 1

)
, then, the schemes in equation

(14) is consistent for order p = 2k + 1. Following equation (36),
this leads to

∥ εn+1 ∥∞=∥ εn ∥∞ +Lh(φ ∥ εn+1 ∥∞

+ ϑ ∥ εn ∥)+ ∥ A−1 ∥∞∥ τn+1(h) ∥∞
≤ di + Lh(φdi+1 + ϑ)di) + u ∥ A−1 ∥∞ h2k+2, (40)

where u > 0 does not dependent on h and n = 0(1)Wt . Assume
there exist a positive value h0, and L(φh0) < 1 such that

dn+1 ≤

(
1 − L(φ(h0 − h) − hϑ)

1 − L(φh0)

)
dn +

Jh2k+2

1 − L(φh0)
,

0 < h ≤ h0. (41)

Then, from lemma equation (1), we have

dn+1 ≤
JQ

k(1 − L(φh0))
exp

[
L(φ + ϑ)

k(1 − Lφh0)

]
h2k+2, (42)

where J = u ∥ (A−1 ∥∞ and Q = Wt ĥ = WtNs · h. Finally,

max
1≤n≤Wt

∥ εn+1 ∥∞≡ O(h2k+2). (43)

3.1. ZERO STABILITY
In this section, the zero stability property of equation (14) is car-
ried out. The first characteristics polynomial associated with the
method equation (14) is given as:

ρ̄(r) = A1r − A0. (44)

The method equation (14) is said to be zero stable if the roots
of the first characteristic equation has all roots inside the unit
circle and only one root on the boundary of the unit circle of the
complex plain. Ref. [22].
To confirm the claim, we illustrate with the following. Given

that determinant of (A1r −A0)= 0 in equation (14). For k = 3 we
have that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



− 17
30

5
2 − 10

9
5

12 − 1
10

1
90

− 137
75

5
6

4
3 − 1

3
1
15 − 1

150
− 2

5 − 19
6

8
3 1 − 2

15
1
90

1
10 − 3

4 −2 19
8

3
10 − 1

60
− 1

15
1
3 − 4

3 − 5
6

137
75

1
15

1
10 − 5

12
10
9 − 5

2
17
30

23
20


r

−



0 0 0 0 0 − 23
20

0 0 0 0 0 − 1
15

0 0 0 0 0 1
45

0 0 0 0 0 − 1
120

0 0 0 0 0 1
150

0 0 0 0 0 − 1
90



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (45)

yields

{{r → 0}, {r → 0}, {r → 0}, {r → 0}, {r → 0}, {r → 1}}.



Kona & Muka / Recent Advances in Natural Sciences 2 (2024) 74 7

For k = 4, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



− 83
70

7
2 − 7

3
35
24 − 7

10
7
30 − 1

21
1

224
− 363

245
1
10 2 − 5

6
1
3 − 1

10
2

105 − 1
588

− 2
7 − 39

10
11
5

5
2 − 2

3
1
6 − 1

35
1

420
1
21 − 1

2 − 29
10

5
2 1 − 1

6
1

42 − 1
560

− 2
105

2
15 − 4

5 −2 58
25

2
5 − 4

105
1

420
1
70 − 1

12
1
3 − 5

4 − 11
10

39
20

1
7 − 1

168
− 2

105
1
10 − 1

3
5
6 −2 − 1

10
363
245

1
28

1
21 − 7

30
7
10 − 35

24
7
3 − 7

2
83
70

1041
1120


r

−



0 0 0 0 0 0 0 − 1041
1120

0 0 0 0 0 0 0 − 1
28

0 0 0 0 0 0 0 1
84

0 0 0 0 0 0 0 − 1
336

0 0 0 0 0 0 0 1
700

0 0 0 0 0 0 0 − 1
840

0 0 0 0 0 0 0 1
588

0 0 0 0 0 0 0 − 1
224



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (46)

which leads to

9994355929484623872000000000r8 − 9994355929484623872000000000r7

121459186643042304000000000
,

and gives
{{r → 0}, {r → 0}, {r → 0}, {r → 0}, {r → 0}, {r → 0}, {r →
0}, {r → 1}}.

For k = 5, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



− 2089
1260

9
2 −4 7

2 − 63
25

7
5 − 4

7
9
56 − 1

36
1

450
− 7129

5670
61
140

8
3 − 14

9
14
15 − 7

15
8
45 − 1

21
1

126 − 1
1620

− 2
9 − 621

140
404
315

14
3 − 28

15
7
9 − 4

15
1
15

2
189

1
1260

1
36 − 3

8 − 739
210

133
60

21
10 − 7

12
1
6 − 3

80
1

180 − 1
2520

− 1
126

1
14 − 4

7 − 41
15

12
5 1 − 4

21
1
28 − 1

210
1

3150
1

252 − 5
168

10
63 − 5

6 −2 41
18

10
21 − 5

84
5

756 − 1
2520

− 1
315

3
140 − 2

21
1
3 − 6

5 − 19
15

1478
735

3
14 − 1

63
1

1260
1

252 − 1
40

1
10 − 7

24
7
10 − 7

4 − 101
210

1863
1120

1
12 − 1

360
− 1

126
1

21 − 8
45

7
15 − 14

15
14
9 − 8

3
61

140
7129
5670

1
45

1
36 − 9

56
4
7 − 7

5
63
25 − 7

2 4 − 9
2

2089
1260

9901
12600



r

−



0 0 0 0 0 0 0 0 0 − 9901
12600

0 0 0 0 0 0 0 0 0 − 1
45

0 0 0 0 0 0 0 0 0 1
135

0 0 0 0 0 0 0 0 0 − 1
720

0 0 0 0 0 0 0 0 0 1
2100

0 0 0 0 0 0 0 0 0 − 1
3780

0 0 0 0 0 0 0 0 0 1
4410

0 0 0 0 0 0 0 0 0 − 1
3360

0 0 0 0 0 0 0 0 0 − 1
126

0 0 0 0 0 0 0 0 0 1
36



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (47)

which leads to

−ζ0r10 − ζ1r9

ζ3
,

where ζ0 = 388865308064695018170354771614760960000000,
ζ1 = 388865308064695018170354771614760960000000, and
ζ3 = 1646952211897640125217832960000000000000, and
gives
{{r → 1}, {r → 0}, {r → 0}, {r → 0}, {r → 0}, {r → 0}, {r →
0}, {r → 0}, {r → 0}, {r → 0}}.

We observed that the determinant of the first characteristics
polynomial of the continous method equation (14) is of the form

det(A1r − A0) = r2k (r − 1) for all k ≥ 1. (48)

Since the determinant of the first characteristics polynomial of
equation (14) can be transformed to the form equation (48) which
possesses all roots inside the unit modulus and only one root on
the boundary of the unit modulus, then the hybrid schemes of
equation (14) are all zero stable for all number of k .

3.2. A-STABILITY
A linear multistep method is said to be an A-stable method if
its region of stability encloses the entire negative half-plane Ref.
[22].

y′ = λy, Re(λ) < 0. (49)

when applied on equation (14) gives

(A1 − zB1)Yn+1 = (A0 + zB0)Yn,where z = λh. (50)

Then simplified into

Yn+1 = M (z)Yn, (51)

where the M (z) is the amplification matrix given as

M (z) = (A1 − zB1)−1(A0 + zB0). (52)

By computing the eigenvalues of the matrixM (z), the stability
funtion P(z) is deduced. If in this interval P(z) < 1, then it is said
to be A-stable. The stability function of the proposed continous
scheme for the case of k = 3, 4 and 6 are presented as below: For
k = 3

P3(z) =
(
27290000z6 + 114574500z5 + 734058450z4

+ 2491318620z3 + 5860559133z2 + 11021391915z

+ 6677977600
)
/
(
25437400z6 − 6089580z5 + 21303162z4

+ 9774243z3 − 127992888z2 − 79278246z − 305699840
)
,

(53)

For k = 4

P4(z) =
(
967680 + 1935360z + 1834560z2 + 1088640z3

+ 448980z4 + 134568z5 + 29531z6 + 4566z7 + 420z8)
/

(
967680 − 1935360z + 1834560z2 − 1088640z3

+ 448980z4 − 134568z5 + 29531z6 − 4566z7 + 420z8
)
,

(54)
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For k = 5

P5(z) =
(
14702763600000z10 + 182325937500000z9

+ 1219715846811000z8 + 7112060709478200z7

+ 25423388787359640z6 + 95242770262622430z5

+ 189866342878684353z4 + 448801094001115262z3

+ 440792645381904633z2

+ 508624424469561064z + 144270723334352356
)
/(

15876(926100000z10 − 11745300000z9

+ 91089442500z8 − 514248432950z7

+ 2204475600815z6 − 6945780484495z5

+ 16357302593693z4 − 24488766545084z3

+ 21261955174848z2 + 392372936487z

− 9839852767962
)
, (55)

For k = 6

P6(z) =
(
99843767100000z12 + 1372145831595000z11

+ 9237418277645250z10 + 62442484611001275z9

+ 247886337382504945z8 + 1088883507688419366z7

+ 2829967550818164966z6 + 8176692105147411648z5

+ 13522316566513030848z4 + 23638084406015270400z3

+ 21526034292121075200z2 + 17408593681414594560z

+ 4940882522434805760
)
/(

99843767100000z12 − 1239344976870000z11

+ 9662807742588000z10 − 56589936328926000z9

+ 263019104818470000z8 − 989649834673500000z7

+ 3024911882652660000z6 − 7451380276179840000z5

+ 14512331485491840000z4 − 21598203699072000000z3

+ 23148843964646400000z2 − 15949442731622400000z

+ 5316480910540800000
)
. (56)

A region of absolute stability for the method of equation (14)
can be defined as

Re = |z ∈ C : M (z) < 1|. (57)

Themethod of equation (14) is said to be A- stable if the region of
its absolute stability contains the entire left of the complex plane.

The boundary of the A-stability region obtained through its
locus for the continuous scheme is shown in the figure.

4. NUMERICAL EXPERIMENT
The numerical scheme denoted herein is applied on two stan-
dard problems in the literature. The non-linearity is reduced us-
ing the Newton Rahpson scheme. The Newton-Raphson itera-

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 1. Stability plot for k = 3.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2. Stability plot for k = 4.

tive scheme is considered to resolve the implicitness of equa-
tion (14) developed for non-linear problem. Thus block solution

Yn+1 = Y
[q]
n+1, in equation (14) is iteratively obtained from

Y [i+1]
n+1 = Y

[i]
n+1 −

∂F(Y [i]
n+1)

∂Yn+1

−1

F(Y [i]
n+1); i = 0(1)q q > 1,

(58)
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Figure 3. Stability plot for k = 5.

where

∂F(Yn+1)
∂Yn+1

=
∂(fn+1,··· ,fn+N )
∂(yn+1,··· ,yn+N ) =



∂fn+1
∂yn+1

∂fn+1
∂yn+2

· · ·
∂fn+1
∂yn+N

∂fn+2
∂yn+1

δfn+2
∂yn+2

· · ·
∂fn+2
∂yn+N

...
∂fn+N
∂yn+1

∂fn+N
∂yn+2

· · ·
∂fn+N
∂yn+N


. (59)

and

M (Yn+1) = AYn+1 + A0Yn − h (B0Fn + BFn+1) = 0. (60)

In the Newton’s scheme, the criteria for terminating non-linear
problems which does not have theoretical solution is ∥ Y [i+1]

n+1 −

Y [i]
n+1 ∥< Tol, where Tol is the accuracy tolerance of the approxi-

mations, defined by the user.
This section contains some numerical computations done in

Matlab. To show the effectiveness, the application of equation
(14) for solving five standard problems are presented herein.

PROBLEM 1:
Consider the problem
This model belongs to the category of epidemiological models,
providing valuable insights into the dynamics of infectious dis-
eases within a closed population over a defined time frame. Typi-
cally, such models involve a coupled system that accounts for the
number of susceptible individuals, denoted as S(t), the number
of infected individuals, denoted as I (t), and the number of indi-
viduals who have recovered from the disease, denoted as R(t).
This foundational model serves as a fundamental framework for
understanding the dynamics of various infectious diseases, in-
cluding but not limited to diseases like measles. The model is
given as:

S′ = τ(1 − S) − βIS, (61)

I ′ = I (τ − γ) + βIS, (62)

R′ = −τR + γI , (63)

Table 1. Comparison of results for problem 1 , error y =| y − y(t) |.
t MCHTF OSHBM HATM

p=4 p=4 p=4
error y error y error y

0.1 1.110 × 10−15 1.714 × 10−14 6.780 × 10−13

0.2 2.220 × 10−15 3.260 × 10−14 6.359 × 10−13

0.3 3.108 × 10−15 4.653 × 10−14 6.380 × 10−13

0.4 4.107 × 10−15 5.902 × 10−14 1.189 × 10−12

0.5 4.551 × 10−15 7.018 × 10−14 1.124 × 10−12

0.6 5.332 × 10−15 8.011 × 10−14 1.099 × 10−12

0.7 6.106 × 10−15 8.891 × 10−14 1.547 × 10−12

0.8 6.439 × 10−15 9.665 × 10−14 1.468 × 10−12

0.9 6.994 × 10−15 1.034 × 10−13 1.419 × 10−12

1.0 7.438 × 10−15 1.093 × 10−13 1.782 × 10−12

Table 2. Comparison of results for problem 2, error yi =| yi − yi(t) |, i = 1, 2.
h Methods error y1 error y2 N FEVAL CPU

1
25 MCHTF5 6.433 × 10−14 9.448 × 10−14 32 160 0.096

IMBlock 4.175 × 10−12 6.264 × 10−12 32 160 0.094
1
26 MCHTF5 1.783 × 10−15 0 64 320 0.210

IMBlock 3.997 × 10−15 5.995 × 10−15 32 320 0.203
1
27 MCHTF5 2.482 × 10−16 1.017 × 10−15 128 640 0.362

IMBlock 1.110 × 10−15 8.887 × 10−15 128 640 0.359

with β, τ and γ are positive parameters. Suppose, the function
y(t) = S(t) + I (t) + R(t). Then the addition of equation (54),
equation (55), and equation (56) leads to:

y′ = τ(1 − y); τ = 0.5, y(0) = 0.5, (64)

where the theoretical solution is given as y(t) = 1 − τeτt .
Table 1 show the numerical results of equation (14) of order

p = 4, the method of order p = 4 Ref. [19] and Chebyshev
method of order p = 4 in Ref. [18].
From the computed result in Table 1, it shows that the new

scheme of equation (14) of order p= 4 performed much better
than those in Ref. [19] of order p = 4 and Ref. [18] of order
p = 4. Hence, the new schemes is more suitable for solving SIR
model.

PROBLEM 2:
Consider the problem

y′ =
(
−10 6
13.5 −10

)
y, y(0) =

( 4e
3
0

)
, (65)

y(t) =

 2e
3

(
e−t + e−19t

)
e
(
e−t − e−10t

)  .
The numerical results for various stepsize h are presented in

Table 2. It can be seen from Table 2 that the MCHTF is the most
efficient method when compared with IMBLOCK in Ref. [16]
even at low order. Here FEVAL means number of function eval-
uation, N is the number of step taken and CPU is the computation
time of the CPU.
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Table 3. Numerical results for problem 3 , error y =| y − y(t) |, h = 0.01.

t MCHTF4 OSHBM

0.01 1.613 × 10−10 1.558 × 10−6

0.02 2.140 × 10−10 2.399 × 10−6

0.03 2.229 × 10−10 2.830 × 10−6

0.04 2.142 × 10−10 3.020 × 10−6

0.05 1.990 × 10−10 3.069 × 10−6

0.06 1.823 × 10−10 3.034 × 10−6

0.07 1.659 × 10−10 2.951 × 10−6

0.08 1.508 × 10−10 2.840 × 10−6

0.09 1.371 × 10−10 2.717 × 10−6

0.10 1.250 × 10−10 2.588 × 10−6

Table 4. Numerical results for problem 4, error y =| y − y(t) |, h = 0.1.

T MCHTF3 MCHTF5 ODE15s
error y error y error y

1 5.763 × 10−5 6.516 × 10−7 3.981 × 10−4

2 5.347 × 10−6 1.945 × 10−7 2.973 × 10−4

3 1.246 × 10−6 1.186 × 10−8 8.459 × 10−4

4 1.559 × 10−7 5.787 × 10−9 2.265 × 10−4

5 1.407 × 10−8 4.934 × 10−10 2.830 × 10−4

6 1.121 × 10−9 4.761 × 10−11 3.077 × 10−4

7 8.335 × 10−11 3.344 × 10−12 4.234 × 10−4

8 5.935 × 10−12 2.620 × 10−13 1.107 × 10−4

9 4.107 × 10−13 1.776 × 10−14 5.997 × 10−5

10 2.797 × 10−14 8.881 × 10−16 2.237 × 10−4

PROBLEM 3:
Given the IVPs

y′ = −10(y − 1)2, y(0) = 2, t ∈ [0, 0.1] . (66)

The theoretical solution is y = 1 + 1
1+10t . The MCHTF5 is

applied to problem 3 and the error (| y − y(t) |) in the various
interval 0 < t ≤ 10 are computed in Table 3. It is clear from the
numerical result and comparison in Table 3 that the MCHTFs5
performs better than the methods (p = 5) in Ref. [23], the
methods (p=5) in Ref. [24] and methods (p=5) of Ref. [18].

PROBLEM 4:
Consider the quadratic Riccati differential equation

y′ = 1 + 2y − y2, y(0) = 0, t ∈ [0, 10] . (67)

The theoretical solution is y = 1+
√

2 tanh
[√

2t + 1
2 log

( √
2−1
√

2+1

)]
.

The problem 4 is solved using the MCHTFs for k = 2, 3
(MCHTFs3 of order p = 3 and MCHTFs5 of order p = 5), re-
spectively. The result are given in Table 4 and compared in term
of accuracy with the results of ODE15s. Thus the MCHTFs per-
form better than the compared ODE15s.

Table 5. Comparison of results for problem 5 on t ∈ [0, 1].
Steps MCHTFs5 GAMs5

p = 5 p = 5
20 9.06 × 10−2 2.25 × 10−1

40 1.12 × 10−2 4.41 × 10−2

80 2.61 × 10−4 6.49 × 10−3

160 6.50 × 10−6 8.86 × 10−4

320 1.86 × 10−7 9.88 × 10−5

The results from ODE15s at t = 1 is 3.660087954 × 10−5.

PROBLEM 5:
Consider the linear system given in Ref. [1]

y′ =

 −21 19 −20
19 −21 20
40 −40 −40

 y, y(0) =

 1
0
−1

 , (68)

and the exact solution is given as

y1(t) = 1
2

(
e−2t + e−40t (cos(40t) + sin(40t))

)
,

y2(t) = 1
2

(
e−2t − e−40t (cos(40t) + sin(40t))

)
,

y3(t) = e−40t (cos(40t) − sin(40t)) .
.

The given ODEs in problem 5 has a stiffness ratio S = 28.5 and
the eigenvalues of the Jacobian matrix are λ1 = −2 and λ2,3 =

−40+40i. Table 5 contains the maximum relative error max
1<i<3
|

yi(t) − yi,h | /(1+ | yi,h |) in the range 0 < t ≤ 1 using MCHTF
of order p = 5. The MCHTFs5 is compared with Generalized
Adams Method (GAM) of order p = 5 in Ref. [1]. It as observed
that the new schemes MCHTFs5 perform better in accuracy than
GAMs6 in Ref. [1].

5. CONCLUSION
A new class of hybrid block method has been introduced and de-
rived as Modified Continous Hybrid Block-Type formula. The
MCHTF derived are found to be A-stable for order p ≤ 18. The
boundary loci in Figures 1-3 show that the schemes are stable
on test problem. Further more, numerical results by implement-
ing MCHTF to some stiff ODEs are obtained, the numerical re-
sults showed that the method is effective and accurate when com-
pared with some existing methods. The development of these
family of methods have the potential to revolutionize the numer-
ical analysis of differential equations, enabling more accurate,
efficient and robust solutions for a wide range of applications.
In the future it can also be applied to fields like machine learn-
ing,control theory, signal processing weather forecasting, fluid
dynamics and quantum mechanics.
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