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A B S T R A C T

The ability to model and forecast waiting and service time to increase patients’ satisfac-
tion, reduce waiting time, avoid casualties, and increase efficiency in service delivery
is crucial. It encourages the identification of future pressure by using the relevant key
performance indicators. In this paper, the ARIMA model is used to study the waiting
and service time of patients at the Federal University Gusau Health Services Clinic. The
system was a single, time-independent arrival with many service points. Based on the
results found in the waiting and service processes, the service time has a lower mean and
variance when compared to the waiting time. The waiting time has a lower skewness
and kurtosis when compared to the service time. The Ljung-Box (Q) Statistic test shows
that the correlation in the time series has been adequately captured for the waiting and
service time processes, though the waiting and service time processes have 4 and 10
outliers respectively. The ARIMA (0,1,2) and ARIMA (2,1,1) are selected for modelling
the waiting and service time respectively based on the evaluation metrics.
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1. INTRODUCTION
The use of modelling and forecasting methods in healthcare set-
tings can lead to operational improvements and improved patient
care, and modifying a time series to a common day clustered se-
quence can provide a statistically significant improvement in the
accuracy of a forecast [1]. Modelling and forecasting outpatient
visits is a vital task in the management of any healthcare orga-
nization. Accurate patient forecasts can lead to improvements
in staff scheduling, resource utilization, and reduced wait times.
Furthermore, it can also provide administrators with a quantified
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basis for decision making [2]. The use of modelling methods in
healthcare settings can ultimately lead to operational improve-
ments, which directly translate to better patient care. Time series
forecasting is widely used in industries such as manufacturing,
distribution, and electric utilities [3].

Accurate modelling and forecasting of hospital outpatient
medical needs is beneficial for reasonable planning and alloca-
tion of healthcare resources to meet the medical demands. In
terms of the multiple attributes of daily outpatient visits, such
as randomness, cyclicity and trend, time series methods such as
ARIMA can be a good choice for outpatient visit forecasting [4].

It has been shown that incorporatingmodelling and forecasting
methods in a healthcare setting can improve resource manage-
ment and hence the overall efficiency of the system [5]. For this
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reason, existing work on modelling and forecasting in healthcare
focuses on problems such as predicting patient demand, resource
scheduling and bed assignments.
Extensive research has been conducted on time series mod-

elling and forecasting across a variety of industries. Exponen-
tial smoothing methods were applied to forecasting electricity
demand lead times from a half-hour to a day-ahead [6]. The
forecast of the physical cash needs of European banks and found
the autoregressive integrated moving average (ARIMA) method
to be optimal studies [7]. The insight on building a distribution
model for use in modelling and forecasting a time series where
demand periodically drops to zero [8].
In the articles related to modelling and forecasting in health-

care settings outside of the emergency department (ED). The new
hybrid models for time series forecasting were investigated and
ARIMAwhere combined with other methods [9, 10]. The explo-
ration of the use of calendar and weather variables, and stepwise
linear regression to forecast patient visits to an urgent care centre
were examined [11]. Another study investigated forecasts from
the perspective of required nurse staffing levels [5]. Several re-
searchers have examined the importance of forecasting daily pa-
tient volumes in hospital EDs. In another study, it focused on
1 to 30 day-ahead forecasts using ARIMA, regression, and neu-
ral network techniques [12]. The analysis of patient arrivals as
well as length of stay and focused on forecasting using various
moving average techniques were studied [13, 14].
In this study, a step was taken further to explore whether other

factors affect the length of stay in the ED and found that an auto-
correlation exists between the mean length of stay of the current
day and the previous day [15]. ARIMA models for forecasting
daily attendances at the ED was useful, and readily available tool
for predicting ED workload [16, 17]. The ARIMA model was
used to forecast monthly outpatient visits in a general hospital in
China [18]. In another study, hospital daily outpatient visits fore-
casting using a combinatorial model based on ARIMA and single
exponential smoothing models for fitting and forecasting perfor-
mances in two departments for 8 weeks, it was found that the
ARIMA model for the respiratory outpatient visits department
had 15.97% performance and the endocrinology outpatient vis-
its department had 23.48% performance [4]. The ARIMAmodel
was used to analyse the typhoid mortality rate in Delta State,
Nigeria, and the ARIMA (0, 1, 0) model was the best model for
forecasting [19].
The Clinic at Federal University Gusau Nigeria (FUGN), is

the only one in the University since the establishment of the Uni-
versity in 2013. The Clinic does not engage in anymodelling and
forecasting research that can solve the problem of staff schedul-
ing and reduce patient waiting time. The Clinic is currently ex-
periencing an increasing number of patients due to the number
of students and staff.
The contribution of the study is to reduce patients waiting time

for service delivery. Hence, a time series forecasting model will
be used to analyse the patient waiting time and service time using
the ARIMA model. Forecast values for the waiting and service
time for the patients of FUGN clinic are needed for better and
more effective managerial decisions to improve clinic efficiency.

Fig. 1. Patient waiting for service

Fig. 2. The research methodology.

2. MATERIALS AND METHODS
The methods applied in this study are stated in this section.
Figure 1 shows the representation of the patients waiting to be
served. Figure 2 shows the summary of research methodology.
The waiting and service time are collected, exploratory data anal-
ysis is carried out before the ARIMA model.

3. DATA DESCRIPTION AND COLLECTION
This research is based on the waiting and service time of patients
that arrive between 8:00 am to 2:00 pm at the FUGN Clinic. The
primary data were collected from the Clinic using 537 patients,
and collected between 25 June, 2019 to 23 July, 2019. The sys-
tem was treated as single, with time-independent arrivals with
numerous service points [20, 21]. The arrival time, waiting time
and service time were collected using observation method.

4. AUTOCORRELATION AND PARTIAL AUTOCORRELATION
The initial correlation of the observations in a time series is usu-
ally expressed as a function of the time lag between observations.
The partial autocorrelation measures the correlation between the
observations a particular number of time units apart in a time
series, after controlling for the effects of observations at inter-
mediate time point [22]. The autocorrelation at lag k , γ (k) , is
defined mathematically as [23, 24].

γ (k) =
E (Xt − µ) (Xt+k − µ)

E(Xt − µ)2 , (1)

where Xt ,t = 0,±1,±2,±3, . . . represent the values of the series
and µ is the mean of the series. E denotes the expected value, the
corresponding sample statistic is calculated as follows [23–25]:

γ̂ (k) =
∑n−k
i=1 (xt − x) (xt+k − x)∑n

i=1 (xt − x)2 , (2)
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where x is the mean of the series of observed values x1, x2, . . . , xn.
A plot of the sample values of the autocorrelation against the lag
is known as the autocorrelation function or correlogram and is a
basic tool in the analysis of time series particularlyfor indicating
possibly suitable models for the series. The term in the numer-
ator of γ (k) is the autocovariance. A plot of the autocovariance
against lag is called the autocovariance function [26].

5. ARIMA (P, D, Q)
ARIMA models are in theory the most general class of models
for forecasting a time series, which can be made to be ‘‘station-
ary’’ by differencing [27]. Perhaps in conjunction with nonlinear
transformations such as logging or deflating [28]. A randomvari-
able that is a time series is stationary if its statistical properties
are all constant over time [29]. The time series modeler proce-
dure which creates models for time series and produces forecasts
in SPSS was used to analyze the data. It includes an expert mod-
eler that automatically determines the best model for each of your
time series. For experienced analysts who desire a greater degree
of control, it also provides tools for custom and select the best
ARIMA model.

6. AUTOREGRESSIVE MODEL
This is a model used primarily in the analysis of time series in
which the observations zt at time t function of previous values of
the series. The model is represented below [24].

zt=Φ1zt−1 +Φ2zt−2 + · · · +Φpzt−p + at , (3)

where at is the random disturbance and Φ1,Φ2,. . . , Φp are finite
set of weight parameters. The process above is the autoregres-
sive process of order p. The autoregressive process of first order
(p = 1) and second order (p = 2) are represented respectively in
Eqs. (4) and (5) [24].

zt=Φ1zt−1 + at . (4)

zt = Φ1zt−1 +Φ2zt−2 + at . (5)

7. MOVING AVERAGE PROCESS
The moving average process is represented as follows [24]:

zt=at − θ1at−1 − θ2at−2 − · · · − θqat−q, (6)

where at ,at−1 , . . . , at−q are white noise sequence, θ1,θ2,. . . ,θq are
finite set of weight parameters. The process above is called mov-
ing average of order q. The moving average process of first order
(q = 1) and second order (q = 2) are represented respectively in
Eqs. (7) and (8) [24]:

zt=at − θ1at−1. (7)

zt = at − θ1at−1 − θ2at−2. (8)

8. AUTOREGRESSIVE MOVING AVERAGE MODEL
A model for a time series that combines both an autoregressive
model and a moving-average model. The general model of order
p, q usually denoted by ARMA(p, d , q) is shown below [24]:

xt=Φ1xt−1+Φ2xt−2+· · ·+Φpxt−p+at−θ1at−1−· · ·−θqat−q,(9)

Fig. 3. Plot of the Distribution of Waiting Time by Patients at the Clinic.

where Φ1,Φ2,. . . ,Φp and θ1, θ2,. . . ,θq are the parameters of the
model and at , at−1, . . . , at−q are a white noise sequence. In some
cases, such models are applied to the time series observations
after differencing to achieve stationarity, in which case they are
known as autoregressive integratedmoving-averagemodels. The
p is the number of autoregressive terms, d is the number of no
seasonal differences needed for stationary, and q is the number
of lagged forecast errors in the prediction equation.

9. LJUNG-BOX TEST
The test is used to test whether there is a collection of autocorre-
lations of a time series is less than 0. The test statistic is shown
below [30]:

Q = T (T + 2)
s∑

k=1

r2
k

T − K
, (10)

where T is the number of observations, s is the coefficient length
for autocorrelation test, rk is the autocorrelation coefficient for
lag k .
The hypothesis of Ljung-Box test are:
H0: Residual is white noise.
Ha: Residual is not white noise.

If the sample value ofQ is greater than the critical value of the
χ2 distribution with s degrees of freedom, then at least a value
of r is statistically different from zero at the specified level of
significance.

10. RESULTS AND DISCUSSION
The model assessed could capture the trend of the waiting and
service time, it results in the estimation of the different trend to
each waiting and service time.

Table 1 shows the basic summary statistics of the waiting and
service time of the patients. The service time has a lower mean
and variancewhen compared towaiting time. Thismeans that the
patients spent more waiting time than service time and the vari-
ability among the service time for patients is lower when com-
pared to the waiting time for patients. The mean is sensitive to
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Table 1. Basic Statistics.
Mean Variance Skewness Kurtosis

Statistic Std. Error Statistic Statistic Std.Error Statistic Std.Error
Waiting Time 11.54 0.294 46.361 1.329 0.105 2.235 0.210
Service Time 5.50 0.130 9.039 6.904 0.105 90.954 0.210

Fig. 4. Plot of the distribution of Service Time by Patients at the Clinic.

Fig. 5. Correlogram Waiting Time by Patients at the Clinic.

Table 2. Model Description.
Model Model Type
Waiting Time ARIMA (0,1,2)
Service Time ARIMA (2,1,1)

outliers and observations that depart from the distribution’s gen-
eral form or shape are called outliers [31]. The waiting time has
a lower skewness and kurtosis when compared to service time.
Skewness is a measure of the degree and direction of asymmetry.
Kurtosis is used to measure the extreme tail for outliers. Ta-
ble 2 shows the ARIMA model for the waiting and service time.

Fig. 6. Box Plot of the Distribution of Waiting Time by patients at the
Clinic.

Fig. 7. Box Plot of the Distribution of Service Time by patients at the
Clinic.

The time series plots in Figures 3 and 4 are non-stationary series,
the non-stationary series was supported by the low stationary R
squared values in Tables 3, 4 and 5. To make the time series
stationary, hence, the condition that difference d = 1 was used
and transform the data using first order differencing to make it
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Table 3.Model Summary for the Waiting Time.
Fit Statistic Mean Percentile

5 10 25 50 75 90 95
Stationary R-squared 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417
R-squared 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293
RMSE 5.764 5.764 5.764 5.764 5.764 5.764 5.764 5.764
MAPE 53.47 53.47 53.47 53.47 53.47 53.47 53.47 53.47
MaxAPE 370.8 370.8 370.8 370.8 370.8 370.8 370.8 370.8
MAE 4.462 4.462 4.462 4.462 4.462 4.462 4.462 4.462
MaxAE 23.18 23.18 23.18 23.18 23.18 23.18 23.18 23.18
Normalized BIC 3.585 3.585 3.585 3.585 3.585 3.585 3.585 3.585
MAPE is Mean Absolute Percentage Error.
MSE is Mean Squared Error.
RMSE is Root Mean Squared Error.

Table 4.Model Summary for the Service Time.
Fit Statistic Mean Percentile

5 10 25 50 75 90 95
Stationary R-squared 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300 0.6300
R-squared 0.31700 0.31700 0.31700 0.31700 0.3170 0.31700 0.31700 0.31700
RMSE 1.94700 1.94700 1.94700 1.94700 1.9470 1.94700 1.94700 1.94700
MAPE 30.2580 30.2580 30.2580 30.2580 30.2580 30.2580 30.2580 30.2580
MaxAPE 148.498 148.498 148.498 148.498 148.498 148.498 148.498 148.498
MAE 1.46700 1.4670 1.46700 1.46700 1.46700 1.46700 1.46700 1.46700
MaxAE 7.65300 7.6530 7.65300 7.65300 7.65300 7.65300 7.65300 7.65300
Normalized BIC 1.49700 1.4970 1.49700 1.49700 1.49700 1.49700 1.49700 1.49700

Table 5.Model Statistics.
Model Number of

Predictors
Stationary
R-squared

Ljung-Box Q (18) Number of
Outliers

Statistics DF Sig.
Waiting Time 0 0.417 23.421 16 0.103 4
Service Time 0 0.630 14.659 15 0.476 10

stationary. ARIMA (0, 1, 2) for the waiting time model, with sta-
tionary R-Square of 0.417 and non-significance of Q-Statistic,
which gives all significance model parameter without constant
is appropriate for forecasting Waiting Time of patients at FUGN
Clinic. Figure 5 shows the spikes of autocorrelation and partial
autocorrelation function obtained from the ARIMA (0, 1, 2) for
waiting time, the model is not statistically significant. This im-
plies that the model is reasonable fit to the waiting time data. The
variability of the waiting and service time are shown in Figures
6 and 7. The points outside the box-plot are the outliers. A box-
plot uses the 5-number summary of Q1, Q2, Q3, minimum and
maximum value to summarize the data.

After building series of ARIMA models, it was found that
ARIMA (2, 1, 1) for the service time model, with Stationary R-
Square of 0.630 and non-significance of Q-Statistic indicate bet-
ter ARIMA model in forecasting service time at FUGN Clinic,
all model parameters are said to be significance except the con-
stant.

Different evaluation metrics such as MAPE, MSE, RMSE etc.
have been used for model assessment [32]. Table 3 shows the
different evaluation metrics for the waiting time, the stationary

R -squared is higher than R-squared. The RMSE and MAPE are
5.564 and 53.47. Generally, a lower value of RMSE and MAPE
are good for predictions. All the validation measures such as
RMSE, MAPE, and MAE indicate that significant results are ob-
tained by the waiting time of patients.

The value MAPE (53.47) signifies the average percentage er-
ror between the waiting time of patients predicted by the model
and the real value. If anMAPE value is small, it is high prediction
accuracy [32]. The value R-square (0.9732), implies the percent-
age of the variance explained by the model. Furthermore, it also
gives the value of the variables at different percentiles and the
distribution of the variables. Column 25 is the 25% percentile,
which is the first quartile, column 50 is the 50% percentile, which
is the median, the median is less sensitive to extreme observa-
tions, column 75 is the 75% percentile, which is the third quar-
tile.

Table 5 shows the Ljung-Box (Q) Statistic test was performed
using SPSS. The Ljung-Box Statistic of the model for the wait-
ing time of patients is not significantly different from zero, with
a value of 23.421 for 16 d.f., with 10 outliers and associated p-
value of 0.103, hence, it fails to reject the null hypothesis of white
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noise. This implies that the correlation in the time series has been
adequately captured. Similarly, the Ljung-Box (Q) Statistic for
the model for the service time of patients is not significantly dif-
ferent from zero, with a value of 14.659 for 15 d.f., with 4 outliers
and associated p-value of 0.476, hence, it fails to reject the null
hypothesis of white noise. This implies that the correlation in the
time series has been adequately captured.

11. CONCLUSION AND FUTURE WORK
In this work, an ARIMA model is proposed to identify wait-
ing and service characteristics, modelling and predictions. The
ARIMA (0,1,2) and ARIMA (2,1,1) are selected for modelling
the waiting and service time respectively based on the evaluation
metrics. It was observed from the results that the service time has
more outliers than the waiting time. This could be due to the fact
that the time required to attend to a patient by a doctor depends
on the patient and the nature of the sickness. This is also evident
in the graphs, where the series exhibit non-stationary. Despite
the nature of the data and results obtained, the accuracy of the
ARIMA model prediction is suitable and satisfactory.
For future studies, we want to build on the results of this study.

A hybridmodel usingmachine learning algorithms and statistical
methods can be applied to solve the problem.
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