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A B S T R A C T

In this paper, the Riemann analytic continuation formula (RACF) is derived from Euler’s
quadratic equation. A nonlinear function and a polynomial function that were required
in the derivation were also obtained. The connections between the roots of Euler’s
quadratic equation and the Riemann Zeta function (RZF) are also presented in this paper.
The method of partial summation was applied to the series that was obtained from the
transformation of Euler’s quadratic equation (EQE). This led to the derivation of the
RACF. A general equation for the generation of the zeros of the analytic continuation
formula of the Riemann Zeta equation via a polynomial approach was also derived and
thus presented in this work. An expression, which was based on a polynomial function
and the products of prime numbers, was also obtained. The obtained function thus
afforded us an alternative approach to defining the analytic continuation formula of
the Riemann Zeta equation (ACFR). With the new representation, the Riemann Zeta
function was shown to be a type of function. We were able to show that the solutions
of the RACF are connected to some algebraic functions, and these algebraic functions
were shown to be connected to the polynomial and the nonlinear functions. The tables
and graphs of the numerical values of the polynomial and the nonlinear function were
computed for a generating parameter, k, and shown to be some types of the solutions
of some algebraic functions. In conclusion, the RZF was redefined as the product of a
derived function, R(tn, s), and it was shown to be dependent on the obtained polynomial
function.
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1. INTRODUCTION
Many authors have recently presented some polynomial ap-
proaches to proving the Riemann hypothesis. It is interesting to
note that Jensen polynomials, Laguerre polynomials, and Jensen
polynomials of Laguerre-Pólyaentire functions have been used
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by authors like [1–9] to establish some possible proofs of the
Riemann Hypothesis. Some worked on a general theorem that
modeled the used polynomials as Hermite polynomials. In Ref.
[9], the authors used fractional calculus to present an approxi-
mation to the zeros of the Riemann zeta function. The authors
constructed a fractional iterative method to obtain the zeros of
functions in which it was possible to avoid expressions that in-
volve hypergeometric functions, Mittag-Leffler functions, or in-
finite series (cf. Ref. [9]), to mention a few.
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As good as their works were, it was expedient to seek a clearer
insight into the nature of these polynomials, knowing that the
solutions to the most difficult problems may not necessarily be
complex in themselves. It is essential to know that the Riemann
Zeta function is a functionwhose solutions are connected to some
algebraic functions, and polynomials are also types of solutions
of algebraic functions. With these in mind, a polynomial ap-
proach was anticipated to prove the Riemann Hypothesis, and
the results are presented in this paper.
This study aims to present the links that connect Euler’s

quadratic equation (EQE) and the analytical continuation for-
mula of the Riemann zeta equation (ACF) by using the gener-
alized polynomial function of Euler’s quadratic equation (EQE)
and the method of partial summation.
The remaining part of this paper is organized as follows: Sec-

tion Two presents the materials and methods. The Link between
the ACFR and EQE is presented in Section 2.1. The analysis
of the derivation of the analytical continuation formula of the
Riemann-Zeta equation (ACFR) from Euler’s quadratic equa-
tion (EQE) is presented in Section 2.2. Section 3 considers
and presents numerical estimates which are of great significance.
Section 4 is for the proof of an equivalent equation to the ACFR.
In Section 5, the concluding remark is presented.

2. MATERIALS AND METHODS
The derivation of the ACFR fromEQE [10] will be obtained from
the applications of the following equations and methods:

(i) EQE and the non-conventional expression for -1 in Ref.
[11]

(ii) The method of partial summation [10–16]∑
pq≤x

log p log q =
∑
p≤x

log p
∑
q≤ x

p

. log q (cf .Ref .[15]) (1)

(iii)
∏( s

2

)
= −

s
2

Γ

( s
2

)
=

∞∑
n≥1

(
2n + s

2n

)
. (2)

These equations will be used to derive the RAC’s derivation from
the EQE and to understand some basic components associated
with the Riemann Hypothesis. It will be possible to see the links
between the roots of the EQE, which is of the form, and the non-
trivial zeros of the Riemann Zeta Function, which is also of the
form; x = 0.5 ± it . It is good to note at this point that all the
nontrivial zeros of the Riemann Zeta Function always have their
real parts to be 0.5, which are synonymous with the real part of
the roots of the EQE, and all the nontrivial zeros are expected to
be within the critical strip. Euler discovered that

P(x) = x2 + x + 41, (3)

would always be prime for 1 ≤ x ≤ 40. Euler obtained the first
few prime numbers from this quadratic Eq. (3) [11]. It can be
seen that the roots of (3) are 6.3836i, which have the same real
part as those of the nontrivial zeros of the Riemann zeta function.
Taking the coefficients of x2 and x in (3) as as k, and replace 41
with B(tn) to have:

µE (s) = (ks2 − ks + B(tn)). (4)

Multiplying Eq. (4) by s+ 2n, whose roots are always −2n : n =

1, 2, 3, ..., then we have

ζE (s) = (ks2 − ks + B(tn))(s + 2n). (5)

By the analysis of Eq. (5), the roots of the polynomial were ob-
tained to be the same as the trivial and the nontrivial zeros of the
Riemann Zeta function, provided that B(tn) was known [5]. In
Ref. [5], some Meromorphic functions that were equivalent to
the Riemann zeta function were presented, in which Eq. (5) was
given as:

ζE (s) =
(s + 2n)
s − 1

(ks2 − ks + B(tn)), (6)

or

ζE (s) =
(s + 2n)
e(s − 1)

(ks2 − ks + B(tn)), (7)

for k = 4, provided that B(tn) was also known. The authors in
Ref. [5] transformed Eqs. (6) and (7) into matrices whose Eigen-
values were the trivial and nontrivial spectral points of the Rie-
mann zeta function provided that;

B(n) = 800.162 + 968.548nv(n), (8)

or

B(tn) = 1 + kt2n , (9)

such that B(n) = B(tn).

2.1. THE LINK BETWEEN THE ACF FROM EQE
By using the method of discretization on the structured Eq. (5),
it becomes:

γ(s) =

∞∑
n≥1

(ζE (Z ))

=

∞∑
n≥1

[
2n

(
1 +

s
2n

)
(ks2 − ks + B(tn))

]
. (10)

By applying the method of partial summation [15] on Eq. (10),
the resulting equation is given to be:

γ(s) =
∑
d≤n

[
2n(ks2 − ks + B(tn))

] ∑
q≤n/d

(
1 +

s
2n

)
, (11)

where d = 2n(ks2 − ks + B(tn)) and q =
(
1 + s

2n

)
. By using Eq.

(10), Eq. (11) can be written as :

= −
s
2

Γ(s/2)(s − 1)

∑
d≤n

2n
(
ks +

B(tn)
(s − 1)

) . (12)

By introducing π−s/2πs/2 = 1, into Eq. (12), it becomes:

γ(s) = φ(s)

∑
d≤n

2n
[(
ks +

B(tn)
(s − 1)

)
πs/2

] , (13)

where φ(s) = −s/2(s− 1)π−s/2Γ(s/2). Using the principle of par-
tial summation on the series in Eq. (12) so that the summation is
distributed over the components of the series, Eq. (12) becomes:

β(s) = φ(s)

πs/2 ∑
r≤n

(
ks +

B(tn)
(s − 1)

)∑
b≤ n

r

2n

 , (14)

where r =
(
ks +

B(tn)
(s−1)

)
πs/2, b = 2n. Eq. (14) shall be used shall

be later in this paper.
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2.2. DERIVATION OF ACF FROM EQ. (14)
The expression [11](

1
ps − 1

) ∞∑
n=0

1
pns

= −1, (15)

allows us to write φ(s) as:

φ(s) =

(
1

ps − 1

) ∞∑
n=0

1
pns

[ s
2

(s − 1)π−s/2γ(s/2))
]
. (16)

By substituting Eq. (16) into (12), γ(s) can be written as:

γ(s)

( 1
ps − 1

)
πs/2

∑
d≤n

2n[F(t , s)]

−1

=
s
2

(s − 1)π−s/2Γ(s/2)
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n=0

1
pns

, (17)

where

F(t , s) =

[(
ks +

B(tn)
(s − 1)

)
πs/2

]
. (18)

Multiplication of Eq. (17) over prime numbers will give;

γ(s)
∏
p

( 1
ps − 1

)
πs/2

∑
d≤n

2n[F(t , s)]

−1

=
s
2

(s − 1)π−s/2Γ(s/2)
∏
p

∞∑
n≥1

1
pns

. (19)

Conclusively, the RHS of Eq. (19) is the same as the ACFR,
while the LHS is an equivalent of the RHS.

3. NUMERICAL ESTIMATES OF B(TN )
The tables in Appendix show the values of B(tn) and the corre-
sponding values of n, v(n) for k = 3, 4, 5 · · · 10, for which the
LHS of Eq. (19) equals its RHS. We proceed to derive an ex-
pression for B(tn)by using Eqs. (8) and (9). Let B(tn) = B(n),
then,

800.162 + 968.548nv(n) = 1 + kt2n . (20)

This allows us to obtain the zeros of the ACF of the Riemann
Zeta function as:

tn = ±

√
800.162 + 968.548nv(n)

k
. (21)

Provided that n and v(n) are as obtained in the tables in the ap-
pendix, and k = 4. Chudnovsky & Seymour [5] obtained the
following for the generation of the zeros of the ACFR:

B(tn) =
ks(s − 1)σ
τ − ϑ

, (22)

where

σ =

 s2π−s/2Γ(s/2)
(

1
ps − 1

) ∞∑
n=0

1
pns
− 1

 . (23)

such that;
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 s2π−s/2Γ(s/2)
(

1
ps − 1

) ∞∑
n=0

1
pns

 , (24)

and

τ =

[
1

2(s − 1)
+ sN (s)

]∏
p

(
1

ps − 1

)
, (25)

where N (s) =
∑∞
n=1

[
e−n

2π
(

1( s2 −1)

2n2π+s−2 + 1( s+1
2 )

2n2π−s−2

)]
[12]. He pointed

out that the above definition is the same as obtained in Eqs. (4)-
(7) [6, 7]. He was able to obtain a general equation for the zeros
of the analytic continuation formula from Eq. (6) as;

B(tn) = 1 + kt2n ; k = 1, 2, 3, · · · . (26)

By which Eq. (19) holds as :

tn =

(
B(tn) − 1

k

)1/2

. (27)

Again from:

1 + kt2n =
ks(s − 1)σ
τ − ϑ

; k = 1, 2, 3, · · · , (28)

such that

tn = ±

(
s(s − 1)σ
τ − ϑ

−
1
k

) 1
2

; k = 1, 2, 3, · · · . (29)

The k value can hold for any integer, depending on the pattern of
choice.

4. PROOF OF THE EQUIVALENCE OF THE LHS AND THE RHS
OF EQ. (20)

It has been shown that the analytic continuation formula of the
Riemann Zeta function can be obtained from Euler’s quadratic
equation, and that the Riemann Zeta written as (12) and (19),
provided B(tn) holds as defined a Function can be above. For the
LHS of Eq. (19) to be equal to (30), one set;

εe = γ(s)
∏
p

( 1
ps − 1

)∑
d≤n

2nF(t , s)

−1

(30)

εe = γ(s)R(t , s)
∏
p

[(
1

ps − 1

)]−1

, (31)

where R(t , s) =
∏

p
[
2n

∑
d≤n F(t , s)

]−1. Then we can also write
(31) as the RHS of (19) such that

γ(s)R(t , s)ζ(s) =
s
2

(s − 1)π−s/2Γ(s/2)ζ(s), (32)

where ε(s) = εe. From the Nachlass of Riemann [10], the ACF,
ε(s), is also defined as

ε(s) =
1
2

+
s
2

(s − 1)J (x, s), (33)

where

J (x, s) =

∫ ∞

1
ψ(x)

(
x

s
2−1 + x

(s + 1)
2

)
dx, (34)

and

ψ(x) =
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n=1

e−n
2nx . (35)
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Since it has been shown that we can set Eq. (33) to be equal to
the RHS of Eq. (32);

1
2

+
s
2

(s − 1)J (x, s) =
s
2

(s − 1)π−s/2Γ(s/2)
∏
p
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n≥1

1
pns

, (36)

or as

1
2

+
s
2

(s − 1)J (x, s) = γ(s)
∏
p

[(
1
ps
− 1

)
R(t , s)

]−1

, (37)

where

R(t , s) = πs/2
∑
d≤n

[
2n

(
ks +

B(tn)
s − 1

)]
. (38)

The evaluation of the Intergrades in Eqs (34) and (36) will give

J (x, s) = 2N (s), (39)

where

N (s) =

∞∑
n=1

e−n2π

 1( s2−1)

2n2π + s − 2
+

1( s+1
2 )

2n2π − s − 2

 . (40)

By using Eq. (39) in (37), we write Eq. (37) as

1
2

+
s
2

(s − 1)N (s) =
s
2

(s − 1)π−s/2Γ(s/2)
∏
p
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n≥1

1
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, (41)

and

1
2

+ s(s − 1)N (s) = γ(s)
∏
p
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1
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− 1

)
R(t , s)

]−1

. (42)

By Eqs. (41) and (42), we obtain new definitions of the ζ(s) as:[ s
2
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]−1

[
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and
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Equating Eqs. (43) and (44), we obtain:[ s
2

(s − 1)π−s/2Γ(s/2)
]−1

[
1
2

+ s(s − 1)N (s)
]

= γ(s)−1
∏
p

R(t , s)
[
1
2

+ s(s − 1)N (s)
]
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such that:

γ(s) =

[ s
2

(s − 1)π−s/2Γ(s/2)
]−1 ∏

p

R(t , s), (46)

and

R(t , s) = πs/2
∑
d≤n

[
2n

(
ks +

B(tn)
s − 1

)]
. (47)

5. CONCLUSION
At this point, insight into the numerical values of F(t , s) and
R(t , s) can be obtained by substituting the expression for B(tn)
and s as defined in Eqs. (8), (9) and (22), for any desired value
of k. Conclusively, new representations for the ACF and the ap-
propriate numerical tables for the derived parameters have been
presented in this paper. One of the applications of the zeros of
the Riemann Zeta function is in locating the positions of prime
numbers. For instance, the first zero is 14.134725142; the inte-
ger part implies that there are prime numbers lesser than 14: 2, 3,
5,7,11 and 13. The second zero of the ACF is 21.022039639; the
integer part is 21, which indicates that between 14.134725142
and 21.022039639, there are 17 and 19 as prime numbers. Be-
tween 21.022039639 and 25.010857580, we have 23 as a prime
number. Between 25.010857580 and 30.424876126, we have 29
as a prime number. 31 is the prime number that lies between
30.424876126 and 32.935061588. 37 is the only prime between
32.935061588 and 37.586178159. So, sometimes the integer
part of the zero will be the desired prime number. To mention a
few, between 37.586178159 and 40.918719012, 39 is the prime
number. The other implications of the integer and the decimal
parts shall be explained in subsequent publications.
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APPENDIX
Tables 1-8 show the numerical values of B(tn) with the corre-
sponding Zeros of the RACF (the non trivial zeros of the Rie-
mann Zeta function).

Table 1. B(tn) = 600.1215 + 726.5416jv(n); k = 3
J(v) v(n) B(tn) Zeros of RACF
0 0 600.1215 14.134725142
1 1.00010000000 1326.66675 21.022039639
2 0.81419300000 1877.37975 25.010857580
3 0.99933800001 2827.76975 30.424876126
4 0.93486800000 3254.90475 32.935061588
5 1.00115130000 4238.91225 37.586178159
6 1.00828555000 5023.774725 40.918719012
7 0.99466219910 5632.455837 43.327073281
8 1.03990730100 6914.233533 48.005150881
9 1.02010197400 7433.053196 49.773832478
10 1.03192399600 8418.314873 52.970321478
11 1.04771729700 9559.286633 56.446247697
12 1.05392419200 10566.9649 59.347044003
13 1.04143138700 11102.26583 60.831778525
14 1.066646479101 12719.68018 65.112544048

Table 2. B(tn) = 800.162 + 968.548jv(n); k = 4
J(v) v(n) B(tn) Zeros of RACF
0 0 800.162 14.134725142
1 1.00010000000 1768.71 21.022039639
2 0.81419300000 2503.173 25.010857580
3 0.99933800001 3703.693 30.424876126
4 0.93486800000 4339.873 32.935061588
5 1.00115130000 5651.883 37.586178159
6 1.00828555000 6698.3663 40.918719012
7 0.99466219910 7509.941116 43.327073281
8 1.03990730100 9218.978044 48.005150881
9 1.02010197400 9910.737595 49.773832478
10 1.03192399600 11224.41983 52.970321478
11 1.04771729700 12745.71551 56.446247697
12 1.05392419200 14089.28653 59.347044003
13 1.04143138700 14803.0210011 60.831778525
14 1.066646479101 16959.57357 65.112544048

Table 3. B(tn) = 1000.2025 + 1210.55075jv(n); k = 5
J(v) v(n) B(tn) Zeros of RACF
0 0 1000.2025 14.134725142
1 1.00010000000 2210.75325 21.022039639
2 0.81419300000 3128.96625 25.010857580
3 0.99933800001 4579.61625 30.424876126
4 0.93486800000 5424.84125 32.935061588
5 1.00115130000 7064.85375 37.586178159
6 1.00828555000 8372.957875 40.918719012
7 0.99466219910 9387.426395 43.327073281
8 1.03990730100 11523.72256 48.005150881
9 1.02010197400 12388.42199 49.773832478
10 1.03192399600 14030.52479 52.970321478
11 1.04771729700 15932.14439 56.446247697
12 1.05392419200 17611.60816 59.347044003
13 1.04143138700 18503.77639 60.831778525
14 1.066646479101 21199.46696 65.112544048

Table 4. B(tn) = 1200.2430 + 1452.5535jv(n); k = 6
J(v) v(n) B(tn) Zeros of RACF
0 0 1200.2430 14.134725142
1 1.00010000000 2652.7965 21.022039639
2 0.81419300000 3754.7595 25.010857580
3 0.99933800001 5455.5395 30.424876126
4 0.93486800000 6509.8095 32.935061588
5 1.00115130000 8477.8245 37.586178159
6 1.00828555000 10047.54945 40.918719012
7 0.99466219910 11264.91167 43.327073281
8 1.03990730100 13828.46070 48.005150881
9 1.02010197400 14866.10639 49.773832478
10 1.03192399600 16836.62975 52.970321478
11 1.04771729700 19118.57327 56.446247697
12 1.05392419200 21133.92979 59.347044003
13 1.04143138700 22204.53167 60.831778525
14 1.066646479101 25439.36026 65.112544048
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Table 5. B(tn) = 1400.2835 + 1694.5563jv(n); k = 7
J(v) v(n) B(tn) Zeros of RACF
0 0 1400.2835 14.134725142
1 1.00010000000 1394.83975 21.022039639
2 0.81419300000 4380.55275 25.010857580
3 0.99933800001 6231.46275 30.424876126
4 0.93486800000 7594.77775 32.935061588
5 1.00115130000 9890.79525 37.586178159
6 1.00828555000 11722.14103 40.918719012
7 0.99466219910 13142.39695 43.327073281
8 1.03990730100 16133.21156 48.005150881
9 1.02010197400 17343.79079 49.773832478
10 1.03192399600 19642.73471 52.970321478
11 1.04771729700 22305.00215 56.446247697
12 1.05392419200 24656.25142 59.347044003
13 1.04143138700 25905.28695 60.831778525
14 1.066646479101 29697.25365 65.112544048

Table 6. B(tn) = 1600.324 + 1936.559jv(n); k = 8
J(v) v(n) B(tn) Zeros of RACF
0 0 1600.324 14.134725142
1 1.00010000000 3536.883 21.022039639
2 0.81419300000 5006.346 25.010857580
3 0.99933800001 7207.386 30.424876126
4 0.93486800000 8679.746 32.935061588
5 1.00115130000 11303.766 37.586178159
6 1.00828555000 13396.73261 40.918719012
7 0.99466219910 15019.88223 43.327073281
8 1.03990730100 18437.95607 48.005150881
9 1.02010197400 19821.47519 49.773832478
10 1.03192399600 22448.83967 52.970321478
11 1.04771729700 25491.43103 56.446247697
12 1.05392419200 28178.57305 59.347044003
13 1.04143138700 29606.04223 60.831778525
14 1.066646479101 33919.14004 65.112544048

Table 7. B(tn) = 1800.3645 + 1878.56175jv(n); k = 9
J(v) v(n) B(tn) Zeros of RACF
0 0 1800.3645 14.134725142
1 1.00010000000 3678.92625 21.022039639
2 0.81419300000 5632.13925 25.010857580
3 0.99933800001 8083.30925 30.424876126
4 0.93486800000 9764.71425 32.935061588
5 1.00115130000 12716.73675 37.586178159
6 1.00828555000 15071.32419 40.918719012
7 0.99466219910 16897.16751 43.327073281
8 1.03990730100 20742.70058 48.005150881
9 1.02010197400 22299.15959 49.773832478
10 1.03192399600 25254.94463 52.970321478
11 1.04771729700 28677.85991 56.446247697
12 1.05392419200 31700.89468 59.347044003
13 1.04143138700 33306.79751 60.831778525
14 1.066646479101 38159.04043 65.112544048

Table 8. B(tn) = 2000.405 + 2120.5645jv(n); k = 10
J(v) v(n) B(tn) Zeros of RACF
0 0 2000.405 14.134725142
1 1.00010000000 2120.9695 21.022039639
2 0.81419300000 6257.9325 25.010857580
3 0.99933800001 8959.2325 30.424876126
4 0.93486800000 10849.6825 32.935061588
5 1.00115130000 14129.7075 37.586178159
6 1.00828555000 16745.91577 40.918719012
7 0.99466219910 18774.65279 43.327073281
8 1.03990730100 23047.44509 48.005150881
9 1.02010197400 24776.84399 49.773832478
10 1.03192399600 28061.04959 52.970321478
11 1.04771729700 31864.28899 56.446247697
12 1.05392419200 35223.21631 59.347044003
13 1.04143138700 37007.55279 60.831778525
14 1.066646479101 42398.93382 65.112544048


