Published by Nigerian Society of Physical Sciences. Hosted by FLAYOO Publishing House LTD

Recent Advances in Natural Sciences



Journal Homepage: https://flayoophl.com/journals/index.php/rans

# Global convergence properties of a Dai-Liao-type CGM for unconstrained optimization

#### Oluwaseun Biodun Onuoha\*

Department of Mathematical Sciences, Adekunle Ajasin University, P.M.B. 001, Akungba Akoko, Ondo State, Nigeria

## ARTICLE INFO

Article history: Received: 05 September 2023 Received in revised form: 05 February 2024 Accepted: 12 February 2024 Available online: 04 March 2024

*Keywords:* Unconstrained optimization, Convergence properties, Descent directions, Objective function

DOI:10.61298/rans.2024.2.1.30

## ABSTRACT

A popular optimization technique called the conjugate gradient method (CGM) is renowned for its effectiveness in addressing problems involving unconstrained optimization. Several conjugate gradient (CG) techniques have been proven to possess global convergence properties both theoretically and numerically. The Dai-Liao-type CGM is a variant that incorporates certain modifications to enhance its convergence properties. This paper examines the global convergence properties of a Dai-Liao-type CGM for unconstrained optimization problems. Theoretically, this study investigates the conditions under which the method ensures convergence to the global minimum of the objective function, focusing on the algorithm's descent directions, the necessary reduction in objective function values, and termination criteria. A numerical experiment is conducted on a set of unconstrained optimization problems to validate the theoretical results obtained in this work. The numerical findings of this study demonstrate the robustness and reliability of the Dai-Liao-type CGM, showing its ability to find the global optimal solution in a wide range of unconstrained optimization problems.

© 2024 The Author(s). Production and Hosting by FLAYOO Publishing House LTD on Behalf of the Nigerian Society of Physical Sciences (NSPS). Peer review under the responsibility of NSPS. This is an open access article under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

## **1. INTRODUCTION**

Optimization entails choosing the best out of numerous possibilities [1]. Optimization theory is widely applied to optimal control problems [2, 3]. In this paper, we consider a nonlinear, unconstrained minimization problem:

$$\min f(x), x \in \mathbb{R}^n, \tag{1}$$

where the objective function  $f : \mathbb{R}^n \to \mathbb{R}$  is smooth and its gradient is represented by  $\nabla f(x) = g(x)$ . To solve Eq. (1), the conjugate gradient method (CGM) is usually employed. The conjugate

gradient (CG) method is developed iteratively by:

$$x_{n+1} = x_n + \varphi_n d_n, \qquad n \ge 0 \tag{2}$$

where  $\varphi_n$  is the steplength, and  $d_n$  is the direction of search. At the first iteration, the direction of search is the steepest descent one, that is,  $d_0 = -g_0$ . Consequently,  $d_n$  is defined as:

$$d_n = -g_n + \beta_n d_{n-1},\tag{3}$$

where  $\beta_n$  is a scalar known as the CG update parameter. Some of the most frequently used update parameters are:

$$\beta_n^{FR} = \frac{||g_n||^2}{||g_{n-1}||^2},\tag{4}$$

$$\beta_n^{HS} = \frac{g_n^T y_{n-1}}{d_{n-1}^T y_{n-1}},\tag{5}$$

<sup>\*</sup>Corresponding Author Tel.: +234-703-0826-908

 $<sup>\</sup>mathit{e\text{-mail:}}$  oluwaseun.akinduko@aaua.edu.ng(Oluwaseun Biodun Onuoha)

$$\beta_n^{DY} = \frac{||g_n||^2}{d_{n-1}^T y_{n-1}},\tag{6}$$

$$\beta_n^{PRP} = \frac{g_n^T y_{n-1}}{\|g_{n-1}\|^2},\tag{7}$$

namely, Fletcher-Reeves (FR) method [4], Hestenes-Stiefel (HS) method [5], Dai-Yuan (DY) method [6], and Polak-Ribiere-Polyak (PRP) method [7, 8], respectively.

In the above classical CG formulae, the difference between two gradients is denoted by  $y_{n-1} = g_n - g_{n-1}$ , ||.|| denotes norm, *T* denotes transpose,  $||g_n||^2 = g_n^T g_n$ , and  $||g_{n-1}||^2 = g_{n-1}^T g_{n-1}$ . The convergence characteristics of the aforementioned CG methods have been investigated in Refs. [9–12], where the FR and DY methods have been shown to possess strong convergence properties with modest performances, while the PRP and HS methods were proven to have better computational performances, which may not be generally convergent.

Despite the DY method's strong convergence property, its efficacy can be affected by the line search technique and parameters used. The convergence may be affected by the precision of the line search in identifying the step size, and for non-convex functions, its convergence may be slower, and it could become trapped in local minima or saddle points [13, 14]. To overcome the drawbacks of the DY technique, Jiang & Jian in Ref. [15] presented a new hybrid CGM, called an improved Dai-Yuan method, where the update parameter is given by

$$\beta_n^{IDY} = \frac{\left|g_n^T d_{n-1}\right|}{-g_{n-1}^T} \cdot \frac{\left|\left|g_n\right|\right|^2}{d_{n-1}^T \left(g_n - g_{n-1}\right)}$$

which they proved to be convergent under the strong Wolfe line search.

Many researchers have developed new methods in response to the need to produce some CG methods with good convergence properties that also perform well computationally. The Dai-Liao type CGM has drawn attention within the CGM family due to improvements targeted at improving its convergence features. Dai & Liao (DL) in Ref. [16] proposed a novel CG approach that can be deemed an improvement over the HS method by incorporating the conjugacy condition:

$$d_n^T y_{n-1} = -tg_n^T s_{n-1}, (8)$$

with the resulting CG parameter given by

$$\beta_n^{DL} = \frac{g_n^T \left( y_{n-1} - ts_{n-1} \right)}{d_{n-1}^T y_{n-1}},\tag{9}$$

where  $t \ge 0$ .

Nevertheless, as the DL-CG method's performance is dependent on the parameter t, the optimal value of t in Eq. (9) is still being taken into consideration [17, 18]. Researchers have dedicated significant efforts to enhance the effectiveness of the DL method. For example, the authors in Ref. [17] suggested the following selections for the parameter t:

$$t_1 = \frac{||y_{n-1}||}{||s_{n-1}||}, \qquad t_2 = \frac{y_{n-1}s_{n-1}}{||s_{n-1}||^2} + \frac{||y_{n-1}||}{||s_{n-1}||}.$$



Figure 1. Iteration Profile of the HDYDL Method in Comparison to the DY, DL, and NM Methods

Salihu *et al.* [19] employed the optimal choice of the parameter t to modify CG methods using the classical HS and FR methods, while Lofti & Hosseini [20] presented a new value t based on a modified BFGS method.

The fulfillment of the sufficient descent criterion:

$$g_n^T d_n \le -k \, \|g_n\|^2, \qquad 0 < k \le 1$$
 (10)

is very crucial to the global convergence of CG methods. Akinduko [21] proposed a new hybrid CGM of a Dai-Liao type, which was proved to fulfill the condition (10) and given by:

$$\beta_k^{NM} = \frac{g_k^T s_{k-1}}{g_{k-1}^T y_{k-1}}.$$
(11)

Furthermore, Onuoha [22] proposed a new hybrid CG method with sufficient descent property by combining the DY and DL methods; the resulting update parameter is given by:

$$\beta_n^{HDYDL} = \frac{g_n^T \left(g_n - ts_{n-1}\right)}{d_{n-1}^T y_{n-1}}.$$
(12)

Recently, global convergence results for CG methods under various inexact line searches have been established in Refs. [23–25]. To demonstrate the convergence of CG techniques, the steplength  $\varphi_n$  typically needs to meet the strong Wolfe (SW) conditions put forth by Wolfe [26] and provided by:

$$f_n - f_{n+1} \ge -\eta \varphi_n g_n^T d_n \tag{13}$$

and

1

$$|g_{n+1}^T d_n| \le \nu |g_n^T d_n|, \tag{14}$$

where  $0 \le \eta \le \upsilon < 1$ ,  $f_n = f(x_n)$ ,  $f_{n+1} = f(x_n + \varphi_n d_n)$ , and  $g_{n+1} = g(x_n + \varphi_n d_n)$ .

Yousif *et al.* [27] introduced a criterion that ensures the establishment of the descent search direction property and the global convergence of CG techniques under SW line search. Many researchers (see e.g., Refs [28–32]) have demonstrated that several numerical techniques for unconstrained optimization converge under the SW condition.

This work aims to examine the global convergence features of the CGM, following the proposal of Onuoha [22]. Specifically, it focuses on how much the Dai-Liao-type CGM attains the global minimum of the objective function. The continuous quest for optimization techniques exhibiting robust theoretical convergence characteristics and practical efficacy in practical applications serves as the driving force behind this research.

2

|     |                             | Table 1. Test I Toblems and then Initial Folitis                                                             |
|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------|
| S/N | Problem Names               | Initial Points                                                                                               |
| 1   | Extended Block Diagonal BD1 | $(0.1, 0.1, \cdots, 0.1), (0.3, 0.3, \cdots, 0.3), (0.5, 0.5, \cdots, 0.5), (0.7, 0.7, \cdots, 0.7)$         |
| 2   | MODF COSINE                 | $(1./n, 1./n, \dots, 1./n), (2./n, 2./n, \dots, 2./n), (5./n, 5./n, \dots, 5./n), (7./n, 7./n, \dots, 7./n)$ |
| 3   | Diagonal 4                  | $(1, 1, \dots, 1), (3, 3, \dots, 3), (5, 5, \dots, 5), (7, 7, \dots, 7)$                                     |
| 4   | Diagonal 5                  | $(1.1, 1.1, \dots, 1.1), (1.3, 1.3, \dots, 1.3), (1.5, 1.5, \dots, 1.5), (1.8, 1.8, \dots, 1.8)$             |
| 5   | MODF SINE                   | $(1./n, 1./n, \dots, 1./n), (3./n, 3./n, \dots, 3./n), (5./n, 5./n, \dots, 5./n), (7./n, 7./n, \dots, 7./n)$ |
| 6   | Extended Beale              | $(1, 0.8, \cdots, 1, 0.8), (1, 2, \cdots, 1, 2), (2, 2, \cdots, 2, 2), (1, 0.6, \cdots, 1, 0.6)$             |
| 7   | RMODF COSINE                | $(1, 1, \dots, 1), (5, 5, \dots, 5), (10, 10, \dots, 10), (20, 20, \dots, 20)$                               |
| 8   | MDF EXPLIN 1                | $(1, 1, \dots, 1), (3, 3, \dots, 3), (5, 5, \dots, 5), (7, 7, \dots, 7)$                                     |
| 9   | RMDF GENHUMPS               | $(1, 1, \dots, 1), (3, 3, \dots, 3), (3.5, 3.5, \dots, 3.5), (4.5, 4.5, \dots, 4.5)$                         |
| 10  | RMODF SINE                  | $(1, 1, \dots, 1), (2, 2, \dots, 2), (3, 3, \dots, 3), (7, 7, \dots, 7)$                                     |
| 11  | QUARTC                      | $(2, 2, \dots, 2), (4, 4, \dots, 4), (6, 6, \dots, 6), (8, 8, \dots, 8)$                                     |
| 12  | Partial Perturbed Quadratic | $(0.5, 0.5, \cdots, 0.5), (0.7, 0.7, \cdots, 0.7), (0.9, 0.9, \cdots, 0.9), (1.0, 1.0, \cdots, 1.0)$         |
| 13  | Generalized Quartic         | $(1, 1, \dots, 1), (0.1, 0.1, \dots, 0.1), (0.3, 0.3, \dots, 0.3), (0.5, 0.5, \dots, 0.5)$                   |
| 14  | Extended DENSCHNB           | $(1, 1, \dots, 1), (5, 5, \dots, 5), (10, 10, \dots, 10), (15, 15, \dots, 15)$                               |
| 15  | Diagonal 8                  | $(1, 1, \dots, 1), (3, 3, \dots, 3), (5, 5, \dots, 5), (0.5, 0.5, \dots, 0.5)$                               |
| 16  | Diagonal 7                  | $(1, 1, \dots, 1), (0.1, 0.1, \dots, 0.1), (0.3, 0.3, \dots, 0.3), (0.5, 0.5, \dots, 0.5)$                   |
| 17  | SINCOS                      | $(3, 0.1, \dots, 3, 0.1), (3, 0.5, \dots, 3, 0.5), (3, 3, \dots, 3, 3), (1, 2, \dots, 1, 2)$                 |
| 18  | Full Hessian FH3            | $(1, 1, \dots, 1), (3, 3, \dots, 3), (5, 5, \dots, 5), (7, 7, \dots, 7)$                                     |
| 19  | Extended Tridiagonal-1      | $(2, 2, \dots, 2), (4, 4, \dots, 4), (5, 5, \dots, 5), (6, 6, \dots, 6)$                                     |
| 20  | HIMMELBG                    | $(1.5, 1.5, \dots, 1.5), (0.1, 0.1, \dots, 0.1), (0.5, 0.5, \dots, 0.5), (0.7, 0.7, \dots, 0.7)$             |



Figure 2. CPU Profile of the HDYDL Method in Comparison to the DY, DL, and NM Methods

#### 2. GLOBAL CONVERGENCE ANALYSIS OF HDYDL-CGM

In this section, the global convergence results for the hybrid method proposed in Ref. [22] are provided. The method was implemented based on the following algorithm:

## ALGORITHM 2.1: HDYDL METHOD

Step 1: Input  $x_0$ , set n = 0,  $d_0 = -g_0$ .

- Step 2: Terminate the algorithm if  $||g_n|| \le 10^{-6}$ .
- Step 3: Let  $d_n$  be calculated by Eq. (3)

Step 4: Let the step length  $\varphi_n$  be determined by Eqs. (13) and (14).

Step 5: Calculate  $x_n$  by Eq. (2).

Step 6: Calculate  $\beta_n$  by Eq. (12).

Step 7: Make n := n + 1, and go back to Step 2.

The following lemma is useful for the establishment of the global convergence of the HDYDL method:

Lemma 2.1 ([22]). The HDYDL method satisfies the sufficient

descent condition (10) where,

$$k = \frac{1}{1 - \sigma}, \quad \sigma \in [0, 1). \tag{15}$$

**Definition 2.1.** A CGM is said to be globally convergent if, starting from any given initial iterate  $x_0$ , it meets the condition:

$$\lim_{n \to \infty} \|g_n\| = 0$$

where  $g_n$  is the gradient of the objective function f at the point  $x_n$ .

To determine the global convergence of the CG method, the following assumptions are made:

**Assumption 2.1.** The level set  $\omega = \{x : f(x) \le f(x_0)\}$  is bounded.

Assumption 2.1 implies that there is a constant *B* such that:

$$|g(x)| \le B \quad \forall \quad x \in \omega. \tag{16}$$

**Assumption 2.2.** In some neighborhood Z of  $\omega$ , f is Lipschitz continuously differentiable, that is, there exists a positive constant M such that:

$$||g(a) - g(b)|| \le M ||a - b|| \quad \forall \quad a, b \in \mathbb{Z}.$$
 (17)

**Lemma 2.2.** Suppose that Assumption 2.1 is satisfied and consider any method of the forms (2) and (3), where  $d_n$  is a descent search direction and  $\varphi_n$  satisfies the SW conditions (13) and (14), then

$$\sum_{n=0}^{\infty} \frac{(g_n^T d_n)^2}{\|d_n\|^2} < \infty.$$
(18)

|       |       | Number of Iteration |     |     | ,   | , , , | Computational time |       |        |
|-------|-------|---------------------|-----|-----|-----|-------|--------------------|-------|--------|
| TP    | Dim   | HDYDL               | DY  | DL  | NM  | HDYDL | DY                 | DL    | NM     |
| 1 - 1 | 5000  | 114                 | 116 | 71  | 31  | 2.428 | 4.211              | 3.303 | 1.771  |
| 1 - 2 | 5000  | 34                  | 30  | 109 | 75  | 0.973 | 1.349              | 3.771 | 4.652  |
| 1 - 3 | 10000 | 118                 | F   | F   | 42  | 4.748 | F                  | F     | 3.695  |
| 1 - 4 | 10000 | 21                  | 21  | 101 | 43  | 0.844 | 1.212              | 4.491 | 2.481  |
| 1 - 4 | 5000  | 21                  | 21  | 75  | 53  | 0.445 | 1.144              | 5.294 | 5.374  |
| 1 - 4 | 7000  | 21                  | 21  | 70  | 49  | 0.589 | 0.868              | 5.76  | 9.311  |
| 1 - 4 | 8000  | 21                  | 21  | 50  | 37  | 0.681 | 0.914              | 3.092 | 1.405  |
| 2 - 1 | 5000  | 6                   | 4   | F   | F   | 0.341 | 0.278              | F     | F      |
| 2 - 1 | 6000  | 6                   | 4   | F   | F   | 0.126 | 0.36               | F     | F      |
| 2 - 2 | 7000  | 8                   | 4   | F   | F   | 0.281 | 0.285              | F     | F      |
| 2 - 2 | 8000  | 6                   | 4   | F   | F   | 0.298 | 0.135              | F     | F      |
| 2 - 3 | 9000  | 8                   | 4   | F   | F   | 0.261 | 0.282              | F     | F      |
| 2 - 3 | 10000 | 8                   | 4   | F   | F   | 0.512 | 0.12               | F     | F      |
| 2 - 4 | 5000  | 10                  | 6   | F   | F   | 0.551 | 0.205              | F     | F      |
| 2 - 4 | 10000 | 8                   | 4   | F   | F   | 0.308 | 0.122              | F     | F      |
| 3 - 1 | 5000  | 15                  | 15  | F   | 44  | 0.691 | 0.922              | F     | 1.943  |
| 3 - 1 | 10000 | 15                  | 15  | F   | 45  | 0.697 | 0.789              | F     | 2.054  |
| 3 - 2 | 5000  | 22                  | 22  | 36  | 166 | 1.013 | 1.065              | 1.601 | 13.302 |
| 3 - 2 | 6000  | 22                  | 22  | 36  | 167 | 1.097 | 1.032              | 1.904 | 10.875 |
| 3 - 3 | 7000  | 12                  | 12  | F   | 26  | 1.005 | 1.432              | F     | 1.676  |
| 3 - 3 | 8000  | 12                  | 12  | F   | 26  | 0.753 | 2.769              | F     | 1.855  |
| 3 - 4 | 9000  | 20                  | 19  | 41  | 16  | 1.259 | 0.8                | 3.398 | 1.157  |
| 3 - 4 | 10000 | 20                  | 19  | 33  | 16  | 1.165 | 2.252              | 3.424 | 1.036  |
| 4 - 1 | 5000  | 21                  | 23  | 164 | 19  | 0.644 | 0.779              | 5.11  | 0.992  |
| 4 - 1 | 6000  | 21                  | 23  | 165 | 19  | 1.132 | 0.706              | 5.144 | 0.755  |
| 4 - 2 | 7000  | 34                  | 47  | 170 | 15  | 1.434 | 2.153              | 5.536 | 0.583  |
| 4 - 2 | 8000  | 34                  | 47  | 172 | 15  | 1.501 | 1.503              | 5.467 | 0.625  |
| 4 - 3 | 9000  | 9                   | 9   | 171 | 31  | 0.336 | 0.36               | 6.251 | 1.437  |
| 4 - 3 | 10000 | 9                   | 9   | 172 | 31  | 0.555 | 0.264              | 6.18  | 1.481  |
| 4 - 4 | 5000  | 27                  | 33  | 169 | 34  | 2.241 | 0.964              | 5.613 | 1.388  |
| 4 - 4 | 10000 | 28                  | 33  | F   | 61  | 1.285 | 1.18               | F     | 2.911  |
| 5 - 1 | 5000  | 1                   | 1   | 1   | 1   | 0.037 | 0.044              | 0.015 | 0.041  |
| 5 - 1 | 10000 | 1                   | 1   | 1   | 1   | 0.035 | 0.029              | 0.041 | 0.038  |
| 5 - 2 | 6000  | 3                   | 3   | 3   | 2   | 0.083 | 0.113              | 0.154 | 0.085  |
| 5 - 2 | 7000  | 1                   | 1   | 1   | 1   | 0.046 | 0.028              | 0.032 | 0.039  |
| 5 - 3 | 8000  | 3                   | 3   | 9   | 3   | 0.156 | 0.123              | 0.463 | 0.142  |
| 5 - 3 | 9000  | 3                   | 3   | 7   | 2   | 0.156 | 0.079              | 0.207 | 0.072  |
| 5 - 4 | 5000  | 3                   | 3   | 22  | 10  | 0.165 | 0.107              | 0.752 | 0.388  |
| 5 - 4 | 10000 | 3                   | 3   | 12  | 4   | 0.085 | 0.081              | 0.466 | 0.161  |

Table 2. Numerical Results for HDYDL, DY, DL, and NM Methods

*Proof.* The Lipschitz condition (17) implies that:

$$(g_{n+1} - g_n)^T d_n \le ||g_{n+1} - g_n|| \, ||d_n|| \le \omega \, ||x_{n+1} - x_n|| \, ||d_n|| \, .$$

By Eq. (2)

 $\varphi_n d_n = x_{n+1} - x_n.$ 

Therefore,

$$(g_{n+1} - g_n)^T d_n \le \omega ||x_{n+1} - x_n|| ||d_n||,$$
  
$$\le \omega |\varphi_n| ||d_n|| ||d_n||,$$
  
$$= \omega |\varphi_n| ||d_n||^2.$$

Thus,

$$\varphi_n \ge \frac{(g_{n+1} - g_n)^T d_n}{\omega \left\| d_n \right\|^2},\tag{19}$$

$$\geq \frac{d_n^T y_n}{\omega \|d_n\|^2}.$$
(20)

Eq. (14) implies that:

 $-\upsilon g_n^T d_n \leq \left| g_{n+1}^T d_n \right| \leq \upsilon g_n^T d_n.$ 

Subtracting  $g_n^T d_n$  from both sides of the inequalities above we have:

$$-\upsilon g_n^T d_n - g_n^T d_n \le \left| g_{n+1}^T d_n \right| - g_n^T d_n \le \upsilon g_n^T d_n - g_n^T d_n,$$

|        |            | Table 3. Numerican  | Results |     | IDL, D1, | DL, and NW | Methods (cont u)   |        |         |
|--------|------------|---------------------|---------|-----|----------|------------|--------------------|--------|---------|
| -      | <b>D</b> . | Number of Iteration | DI/     | БТ  |          |            | Computational time | DI     |         |
|        | Dim        | HDYDL               | DY      | DL  | NM       | HDYDL      | DY                 | DL     | NM      |
| 6 - 1  | 5000       | 109                 | 242     | F   | 1223     | 8.21       | 22.916             | F      | 82.014  |
| 6 - 1  | 10000      | 110                 | 242     | F   | 1243     | 11.758     | 42.67              | F      | 158.244 |
| 6 - 2  | 5000       | 955                 | F       | 34  | 1206     | 66.223     | F                  | 4.485  | 80.894  |
| 6 - 2  | 10000      | 994                 | F       | 35  | 1222     | 178.082    | F                  | 10.181 | 161.16  |
| 6 - 3  | 5000       | 53                  | 45      | F   | 1112     | 3.673      | 3.319              | F      | 77.315  |
| 6 - 3  | 10000      | 57                  | 46      | F   | 1139     | 7.542      | 6.037              | F      | 152.966 |
| 6 - 4  | 5000       | 149                 | 57      | F   | 996      | 13.045     | 4.163              | F      | 67.648  |
| 6 - 4  | 10000      | 149                 | 60      | 55  | 1019     | 25.189     | 7.835              | 14.157 | 140.906 |
| 7 - 1  | 5000       | 15                  | F       | 40  | F        | 0.832      | F                  | 1.593  | F       |
| 7 - 1  | 10000      | 16                  | F       | 40  | F        | 0.568      | F                  | 1.682  | F       |
| 7 - 2  | 5000       | 24                  | 24      | 126 | 14       | 1.021      | 1.167              | 3.285  | 0.463   |
| 7 - 2  | 7000       | 24                  | 24      | 127 | 14       | 1.235      | 1.091              | 3.879  | 0.567   |
| 7 - 3  | 8000       | 20                  | 9       | 221 | F        | 0.825      | 0.462              | 8.133  | F       |
| 7 - 3  | 9000       | 20                  | 9       | 195 | 27       | 0.995      | 0.354              | 7.285  | 0.904   |
| 7 - 4  | 5000       | 27                  | F       | F   | F        | 1.189      | F                  | F      | F       |
| 8 - 1  | 5000       | 19                  | 16      | 156 | 18       | 0.509      | 0.597              | 13.857 | 1.249   |
| 8 - 1  | 6000       | 19                  | 16      | 157 | 18       | 0.822      | 0.765              | 11.71  | 1.444   |
| 8 - 2  | 7000       | 29                  | 29      | 167 | 12       | 1.111      | 1.564              | 7.583  | 0.572   |
| 8 - 2  | 8000       | 29                  | 29      | 167 | 12       | 1.259      | 1.49               | 7.121  | 0.627   |
| 8 - 3  | 5000       | 21                  | 17      | 161 | 18       | 0.991      | 2.371              | 6.961  | 1.449   |
| 8 - 3  | 9000       | 21                  | 17      | 164 | 18       | 2.026      | 2.185              | 7.053  | 2.182   |
| 8 - 4  | 5000       | 27                  | 25      | 198 | 16       | 1.859      | 3.244              | 10.209 | 0.599   |
| 8 - 4  | 10000      | 27                  | 26      | 202 | 16       | 1.041      | 3.323              | 6.902  | 0.982   |
| 9 - 1  | 5000       | 173                 | F       | F   | F        | 62.419     | F                  | F      | F       |
| 9 - 2  | 5000       | 37                  | 37      | 145 | F        | 1.512      | 1.287              | 3.608  | F       |
| 9 - 2  | 6000       | 37                  | 38      | F   | F        | 1.533      | 0.876              | F      | F       |
| 9 - 2  | 7000       | 37                  | 38      | 147 | F        | 1.596      | 1.048              | 4.396  | F       |
| 9 - 3  | 5000       | 18                  | 27      | F   | 12       | 0.842      | 0.593              | F      | 0.417   |
| 9 - 3  | 7000       | 18                  | 27      | 132 | 12       | 0.623      | 0.782              | 4.398  | 0.411   |
| 9 - 3  | 8000       | 18                  | 27      | F   | 12       | 0.611      | 1.036              | F      | 0.429   |
| 9 - 4  | 5000       | 34                  | F       | F   | F        | 1.322      | F                  | F      | F       |
| 10 - 1 | 5000       | 20                  | 20      | 40  | 18       | 0.676      | 0.64               | 1.279  | 0.956   |
| 10 - 1 | 10000      | 20                  | 20      | 29  | 40       | 0.504      | 0.569              | 1.072  | 5.242   |
| 10 - 2 | 6000       | 10                  | 10      | F   | 23       | 0.491      | 0.271              | F      | 1.509   |
| 10 - 2 | 8000       | 10                  | 10      | 62  | 23       | 0.519      | 0.251              | 4.69   | 1.991   |
| 10 - 3 | 9000       | 14                  | 16      | 32  | 21       | 0.661      | 0.596              | 0.947  | 1 654   |
| 10 - 3 | 10000      | 14                  | 16      | 32  | 30       | 0.867      | 0.41               | 0.723  | 3 4 3 9 |
| 10 - 4 | 5000       | 20                  | 27      | 50  | 14       | 0.007      | 0.41               | 1 887  | 0 711   |
| 10 - 4 | 10000      | 20                  | 38      | 45  | 14       | 0.783      | 1.815              | 2.484  | 0.844   |

$$(-\upsilon-1)g_n^T d_n \le \left|g_{n+1}^T d_n\right| - g_n^T d_n,$$

Thus

$$-(\upsilon+1)g_n^T d_n \le |g_{n+1}^T d_n| - g_n^T d_n,$$

and

$$\begin{aligned} -(\upsilon+1)g_{n}^{T}d_{n} &\leq \left|g_{n+1}^{T}d_{n}\right| - g_{n}^{T}d_{n}, \\ &\leq \left|g_{n+1}^{T}d_{n}\right| - \left|g_{n}^{T}d_{n}\right|, \\ &\leq \left|(g_{n+1} - g_{n})^{T}d_{n}\right|, \\ &\leq \left|d_{n}^{T}y_{n}\right|. \end{aligned}$$

Therefore

$$\left|d_n^T y_n\right| \ge -(\upsilon+1)g_n^T d_n,$$

which also implies that:

$$\left| d_n^T y_n \right| \ge d_n^T y_n \ge -(\upsilon+1)g_n^T d_n.$$

The above inequality, combined with Eq. (20), implies that

$$\varphi_n \ge \frac{-(1+\upsilon)}{\omega} \frac{g_n^T d_n}{\|d_n\|^2}.$$

|        |       | Number of Iteration |     |      |      |        | Computational time |        |        |
|--------|-------|---------------------|-----|------|------|--------|--------------------|--------|--------|
| TP     | Dim   | HDYDL               | DY  | DL   | NM   | HDYDL  | DY                 | DL     | NM     |
| 11 - 1 | 5000  | 1                   | 1   | 1    | 1    | 0.054  | 0.118              | 0.033  | 0.041  |
| 11 - 1 | 6000  | 1                   | 1   | 1    | 1    | 0.034  | 0.031              | 0.032  | 0.032  |
| 11 - 2 | 8000  | 386                 | 1   | 173  | 5    | 11.382 | 0.038              | 4.446  | 0.2    |
| 11 - 2 | 9000  | 391                 | 536 | 173  | 5    | 11.004 | 11.188             | 4.297  | 0.231  |
| 11 - 3 | 5000  | 337                 | 88  | 231  | 5    | 7.299  | 2.395              | 5.753  | 0.211  |
| 11 - 3 | 7000  | 350                 | 94  | 232  | 5    | 7.787  | 2.5                | 5.3    | 0.274  |
| 11 - 4 | 9000  | 398                 | 625 | 242  | 13   | 8.493  | 15.737             | 6.012  | 0.777  |
| 11 - 4 | 10000 | 402                 | 636 | 243  | 13   | 15.282 | 15.332             | 5.937  | 0.84   |
| 12 - 1 | 5000  | 4                   | 3   | 321  | 49   | 0.266  | 0.17               | 12.489 | 2.212  |
| 12 - 1 | 10000 | 4                   | 4   | 1401 | 51   | 0.289  | 0.642              | 77.692 | 3.22   |
| 12 - 2 | 6000  | 4                   | 2   | 311  | 14   | 0.361  | 0.102              | 14.825 | 0.575  |
| 12 - 2 | 7000  | 4                   | 2   | 332  | 46   | 0.241  | 0.133              | 20.411 | 2.083  |
| 12 - 3 | 8000  | 4                   | 2   | 316  | 12   | 0.29   | 0.227              | 7.536  | 0.605  |
| 12 - 3 | 9000  | 4                   | 4   | 333  | 24   | 0.513  | 0.393              | 9.278  | 1.346  |
| 12 - 4 | 8000  | 4                   | 2   | 317  | 12   | 0.294  | 0.12               | 7.637  | 0.579  |
| 12 - 4 | 5000  | 4                   | 4   | 328  | 50   | 0.23   | 0.231              | 9.193  | 1.829  |
| 13 - 1 | 5000  | 33                  | 38  | 91   | 47   | 1.217  | 2.459              | 4.58   | 1.667  |
| 13 - 1 | 10000 | 33                  | 36  | F    | 27   | 1.389  | 2.301              | F      | 0.921  |
| 13 - 2 | 6000  | 15                  | 14  | 40   | 17   | 1.022  | 0.885              | 1.225  | 0.621  |
| 13 - 2 | 7000  | 15                  | 14  | 37   | 15   | 0.961  | 0.971              | 1.261  | 0.527  |
| 13 - 3 | 8000  | 20                  | 20  | 56   | 18   | 1.227  | 1.531              | 1.996  | 0.602  |
| 13 - 3 | 9000  | 20                  | 20  | 35   | 17   | 1.486  | 1.267              | 1.339  | 0.638  |
| 13 - 4 | 7000  | 22                  | 22  | 41   | 19   | 1.486  | 1.583              | 1.474  | 0.723  |
| 13 - 4 | 10000 | 23                  | 22  | 74   | 19   | 1.587  | 1.321              | 2.564  | 0.632  |
| 14 - 1 | 5000  | 27                  | 29  | 20   | 19   | 0.942  | 1.192              | 1.263  | 1.567  |
| 14 - 1 | 10000 | 29                  | 29  | 20   | 19   | 1.055  | 1.455              | 1.217  | 1.587  |
| 14 - 2 | 6000  | 45                  | F   | 38   | F    | 2.086  | F                  | 2.099  | F      |
| 14 - 2 | 7000  | 46                  | F   | 38   | F    | 1.907  | F                  | 2.088  | F      |
| 14 - 3 | 8000  | 41                  | 33  | 51   | 25   | 1.886  | 1.628              | 2.888  | 0.901  |
| 14 - 3 | 9000  | 41                  | 33  | 51   | 25   | 1.584  | 1.75               | 4.05   | 0.903  |
| 14 - 4 | 5000  | 102                 | 48  | F    | 127  | 4.327  | 2.42               | F      | 4.611  |
| 14 - 4 | 10000 | 92                  | 49  | 34   | 132  | 4.292  | 3.183              | 2.38   | 5.011  |
| 15 - 1 | 5000  | 21                  | 20  | F    | 15   | 0.505  | 1.066              | F      | 0.726  |
| 15 - 1 | 6000  | 21                  | 20  | F    | 15   | 0.765  | 0.669              | F      | 0.753  |
| 15 - 2 | 7000  | 74                  | F   | F    | F    | 2.883  | F                  | F      | F      |
| 15 - 2 | 8000  | 74                  | F   | F    | F    | 4.422  | F                  | F      | F      |
| 15 - 3 | 9000  | 88                  | F   | F    | F    | 3.626  | F                  | F      | F      |
| 15 - 3 | 10000 | 88                  | F   | F    | F    | 3.245  | F                  | F      | F      |
| 15 - 4 | 5000  | 16                  | 16  | 160  | 18   | 0.623  | 1.002              | 5.429  | 0.853  |
| 15 - 4 | 10000 | 18                  | 18  | 163  | 1740 | 0.653  | 0.977              | 5.419  | 73.228 |

Table 4. Numerical Results for HDYDL, DY, DL, and NM Methods (cont'd)

Eq. (13) implies that

$$\begin{split} f(x_n) - f(x_{n+1}) &\geq -\eta \varphi_n g_n^T d_n, \\ &\geq \frac{(-\eta) \left(-(1+\upsilon)\right)}{\omega} \frac{(g_n^T d_n)^2}{\||d_n\||^2}, \\ &= \frac{\eta (1+\upsilon)}{\omega} \frac{(g_n^T d_n)^2}{\||d_n\||^2}, \\ &= \gamma \frac{(g_n^T d_n)^2}{\||d_n\||^2}, \end{split}$$

where

$$\gamma = \frac{\eta(1+\upsilon)}{\omega}.$$

Summing the above from n = 0 to n = m, we have

$$\sum_{n=0}^{m} \frac{\gamma(g_n^T d_n)^2}{||d_n||^2} \le \sum_{n=0}^{m} f(x_n) - f(x_{n+1}),$$
  
=  $f(x_0) - f(x_{m+1}),$   
 $\le f(x_0) + |f(x_{m+1})|,$   
 $\le f(x_0) + M.$ 

|        |       | Table 5. Numerical R | esults for | ·HDYD | L, DY, D | L, and NM M | lethods (cont'd)   |       |        |
|--------|-------|----------------------|------------|-------|----------|-------------|--------------------|-------|--------|
|        |       | Number of Iteration  |            |       |          |             | Computational time |       |        |
| TP     | Dim   | HDYDL                | DY         | DL    | NM       | HDYDL       | DY                 | DL    | NM     |
| 16 - 1 | 5000  | 91                   | 88         | 152   | F        | 3.587       | 2.975              | 4.979 | F      |
| 16 - 1 | 10000 | 93                   | 90         | 155   | F        | 4.391       | 3.002              | 5.437 | F      |
| 16 - 2 | 5000  | 19                   | 18         | 151   | F        | 1.749       | 0.583              | 5.843 | F      |
| 16 - 2 | 6000  | 19                   | 18         | 152   | F        | 2.717       | 0.637              | 5.044 | F      |
| 16 - 3 | 7000  | 14                   | 23         | 161   | F        | 0.508       | 0.84               | 6.114 | F      |
| 16 - 3 | 8000  | 14                   | 23         | 162   | F        | 0.637       | 0.657              | 6.037 | F      |
| 16 - 4 | 9000  | 19                   | 20         | 170   | F        | 0.644       | 0.677              | 6.774 | F      |
| 16 - 4 | 10000 | 19                   | 20         | 171   | F        | 0.623       | 0.548              | 6.36  | F      |
| 17 - 1 | 5000  | 374                  | 391        | 162   | 251      | 17.358      | 62.973             | 5.337 | 9.819  |
| 17 - 1 | 10000 | 350                  | 386        | 58    | 500      | 17.382      | 7.38               | 2.817 | 18.486 |
| 17 - 2 | 6000  | 58                   | 44         | 64    | 175      | 2.092       | 1.6                | 2.356 | 6.177  |
| 17 - 2 | 7000  | 96                   | 57         | 131   | 175      | 3.842       | 1.823              | 3.861 | 6.493  |
| 17 - 3 | 6000  | 101                  | 123        | 83    | 268      | 4.107       | 4.097              | 2.742 | 9.159  |
| 17 - 3 | 8000  | 130                  | 127        | 98    | 521      | 5.369       | 4.47               | 3.163 | 18.273 |
| 17 - 4 | 5000  | 297                  | F          | 69    | 151      | 11.634      | F                  | 2.127 | 5.215  |
| 17 - 4 | 10000 | 281                  | F          | 165   | 164      | 14.019      | F                  | 6.1   | 6.265  |
| 18 - 1 | 5000  | 30                   | 26         | F     | 20       | 1.781       | 1.811              | F     | 1.066  |
| 18 - 1 | 10000 | 26                   | 44         | F     | 34       | 2.891       | 4.169              | F     | 3.105  |
| 18 - 2 | 6000  | 64                   | 60         | 276   | 41       | 3.392       | 3.584              | 8.463 | 2.168  |
| 18 - 2 | 7000  | 130                  | 142        | F     | F        | 8.355       | 8.793              | F     | F      |
| 18 - 3 | 5000  | 43                   | 38         | F     | 21       | 1.827       | 2.066              | F     | 1.095  |
| 18 - 3 | 8000  | 1002                 | 1017       | 277   | 523      | 99.845      | 71.096             | 8.07  | 37.918 |
| 18 - 4 | 9000  | 29                   | 36         | F     | 15       | 1.272       | 3.322              | F     | 1.389  |
| 18 - 4 | 10000 | 42                   | 44         | 235   | 25       | 3.5         | 4.102              | 7.07  | 2.515  |
| 19 - 1 | 5000  | 87                   | 269        | F     | F        | 3.085       | 13.935             | F     | F      |
| 19 - 1 | 7000  | 87                   | 269        | F     | F        | 3.951       | 13.476             | F     | F      |
| 19 - 2 | 6000  | 247                  | 130        | F     | F        | 6.965       | 5.525              | F     | F      |
| 19 - 2 | 8000  | 245                  | 105        | F     | F        | 11.264      | 3.617              | F     | F      |
| 19 - 3 | 9000  | 378                  | 290        | F     | F        | 19.614      | 10.109             | F     | F      |
| 19 - 3 | 10000 | 378                  | 324        | F     | F        | 12.946      | 10.138             | F     | F      |
| 19 - 4 | 5000  | 242                  | 268        | F     | F        | 8.629       | 8.153              | F     | F      |
| 19 - 4 | 10000 | 242                  | 268        | F     | F        | 7.609       | 9.501              | F     | F      |
| 20 - 1 | 5000  | 431                  | 44         | 168   | 4        | 11.512      | 1.418              | 4.706 | 0.163  |
| 20 - 1 | 6000  | 440                  | 46         | 169   | 4        | 10.216      | 1.377              | 4.517 | 0.181  |
| 20 - 2 | 7000  | 28                   | 23         | 24    | 67       | 1.406       | 0.79               | 0.936 | 2.217  |
| 20 - 2 | 8000  | 29                   | 23         | 24    | 67       | 1.723       | 0.803              | 0.752 | 2.35   |
| 20 - 3 | 9000  | 79                   | 77         | 37    | 77       | 3.154       | 3.692              | 1.278 | 2.891  |
| 20 - 3 | 10000 | 79                   | 77         | 37    | 77       | 3.385       | 3.921              | 1.553 | 3.102  |
| 20 - 4 | 7000  | 955                  | F          | 35    | 5        | 20.726      | F                  | 1.153 | 0.212  |
| 20 - 4 | 8000  | 962                  | F          | 38    | 5        | 19.185      | F                  | 1.412 | 0.204  |

The last inequality follows from Assumption 2.1, indicating that for each  $x \in \omega$  and a positive constant M,  $|f(x)| \leq M$ . Therefore, for all  $m \geq 0$ ,

**Theorem 2.1** ([33]). Suppose that Assumption 2.1 and Assumption 2.2 are satisfied, and consider any method satisfying Eqs.

$$0 < \sum_{n=0}^{\infty} \frac{(g_n^T d_n)^2}{\|d_n\|^2} \le \frac{1}{\gamma} (f(x_0) + M) < \infty.$$

Thus, proving Lemma 2.2

(2) and (3), where  $\varphi_n$  is obtained with the SW conditions (13) and (14). If

$$\sum_{n=0}^{\infty} \|g_n\|^2 < \infty, \tag{21}$$

then

$$\lim_{n \to \infty} \inf \|g_n\| = 0.$$
<sup>(22)</sup>

*Proof.* Suppose Eq. (22) is not true, then there exists a constant u > 0 such that:

$$\|g_n\| \ge u, \forall n. \tag{23}$$

Using Eq. (10) with k given by Eq. (15), Eqs. (21) and (23), we have

$$\sum_{n=0}^{\infty} \frac{u^4}{\|d_n\|^2} \le \sum_{n=0}^{\infty} \frac{\|g_n\|^4}{\|d_n\|^2},$$

$$\le \sum_{n=0}^{\infty} \frac{(1-\sigma)^2 (g_n^T d_n)^2}{\|d_n\|^2},$$

$$= \sum_{n=0}^{\infty} \frac{(1-\sigma)^2 (g_n^T d_n)^2}{\|d_n\|^2},$$

$$\le \sum_{n=0}^{\infty} \frac{(1-\sigma)^2 \|g_n\|^2 \|d_n\|^2}{\|d_n\|^2},$$

$$= (1-\sigma)^2 \sum_{n=0}^{\infty} \|g_n\|^2,$$

$$= \infty,$$

which contradicts Lemma 2.2. Thus,  $\lim_{n\to\infty} \inf ||g_n|| = 0$ .

### 3. NUMERICAL RESULTS AND DISCUSSION

In this section, a report on the performance of the HDYDL method in comparison with the DY and DL methods is presented. To further validate the method's efficiency, it is compared to the NM method, a recently proposed Dai-Liao-type CGM given by Akinduko [21].

A total of 20 unconstrained optimization problems taken from Bongartz *et al.* [34] and Andrei [35] were solved. For each solved test problem (TP), four initial points and dimensions (Dim) ranging from 5000 to 10000 were considered, totaling 158 computations. The computations were carried out on a computer with the following specifications: 4 GB of RAM, 2.2 GHz processor speed, and the Windows 10 operating system. The basis of comparison includes the computational time (CPU) and the number of iterations. The iterations were terminated when  $||g_n|| \le 10^{-6}$  or the number of iterations went beyond 2000. The notation "F" is used to denote a failed iteration. For the step size computation, the SW search technique was used.

Table 1 presents the solved test problems and their initial points, while Tables 2–5 give the details of the numerical results. In the presentation of results in Tables 2–5, the form  $(\mathbf{a} - \mathbf{b})$  is used in the column labeled TP, where TP represents a particular solved test problem, a denotes the serial number of the TP as it appears in Table 1, and **b** denotes the initial point accompanying a as it appears in Table 1. Figures 1 and 2 depict the CPU and the iteration profiles, respectively. This is based on the method of Dolan & More [36]. The y-axes of the Figures show the percentage of successfully solved problems, while the top curve represents the fastest method. Based on this fact, the percentages for the compared methods are recorded: 100% for HDYDL, 88.6% for DY. 70.3% for DL, and 74.7% for NM. These results demonstrate that the HDYDL method is the most successful of the four under consideration, solving every test problem regardless of the starting point. The DY and NM methods follow this, while the DL method lags in performance.

## 4. CONCLUSION

This work investigates the global convergence properties of the Dai-Liao-type CGM for unconstrained optimization problems.

It looked into the convergence requirements, such as termination criteria, descent directions, and reduction of the objective function. This work adds to the increasing body of knowledge on optimization techniques by concentrating on the Dai-Liao-type CGM. It provides practitioners with useful information to help them select efficient strategies for solving unconstrained optimization problems. The numerical experiments serve as practical validation, bridging the gap between theory and real-world applicability. Comparing the HDYDL approach to the DY, DL, and NM methods, the results show how resilient and reliable the HDYDL method is in locating global optimal solutions.

### ACKNOWLEDGMENT

The author appreciate the editors and the anonymous reviewers for their valuable comments and suggestions for the improvement of the paper.

#### References

- E. K. Chong & S. H. Zak, An Introduction to Optimization, Wiley Inter-Science Publication Inc, New York, 2001. https://epdf.tips/ an-introduction-to-optimization.html.
- [2] O. Olotu, C. Aladesaye & K. A. Dawodu, "Modified gradient flow method for solving one-dimensional optimal control problem governed by linear equality constraint", Journal of the Nigerian society of Physical Sciences 4 (2022) 146. https://doi.org/10.46481/jnsps.2022.589.
- [3] T. T. Yusuf, A. Abidemi, A. S. Afolabi & E. J. Dansu, "Optimal control of the coronavirus pandemic with impacts on implemented control measures", Journal of the Nigerian Society of Physical Sciences 4 (2022) 88. https: //doi.org/10.46481/jnsps.2022.414.
- [4] R. Fletcher & C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964) 149. https://doi.org/10.1093/COMJNL/7.2.149.
- [5] M. R. Hestenes & E. Stiefel, "Methods of conjugate gradients for solving linear systems", J. Res. Natl. Bur. Stand. 49 (1952) 409. https://nvlpubs. nist.gov/nistpubs/jres/049/jresv49n6p409\_a1b.pdf.
- [6] Y. H. Dai & Y. Yuan, "A nonlinear conjugate gradient method with a strong global convergence property", SIAM J. Optim. **10** (1999) 177. https://doi. org/10.1137/S1052623497318992.
- [7] E. Polak & G. Ribiere, "Note Sur la Convergence de directions conjugees", ESAIM: Math. Model. Numer. Anal. 3 (1969) 35. https://doi.org/10.1051/ M2AN/196903R100351.
- [8] B. T. Polyak, "The conjugate gradient method in extreme problems", Comput. Math. Math. Phys. 9 (1969) 94. https://doi.org/10.1016/0041-5553(69) 90035-4.
- J. C. Gilbert & J. Nocedal, "Global convergence properties of conjugate gradient methods for optimization", SIAM Journal on Optimization 2 (1992) 21. https://doi.org/10.1137/0802003.
- [10] Z. Wei, S. Yao & L. Liu, "The convergence properties of some new conjugate gradient methods", Applied Mathematics and Computation 183 (2006) 1341. https://doi.org/10.1016/j.amc.2006.05.150.
- [11] X. Jiang & J. Jian, "A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems", Nonlinear Dyn. 72 (2013) 101. https://doi.org/10.1007/s11071-012-0694-6.
- [12] Y. Yueting & C. Mingyuan, "The global convergence of a new mixed conjugate gradient method for unconstrained optimization", Journal of Applied Mathematics 2012 (2012) 932980. https://doi.org/10.1155/2012/932980.
- [13] J. Zhang, Y. Xiao & Z. Wei, "Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization", Mathematical Problems in Engineering 2009 (2009) 243290. https://doi. org/10.1155/2009/243290.
- [14] S. S. Djordjevic, "New hybrid conjugate gradient method as a convex combination of HS and FR methods", Journal of Applied Mathematics and Computation 2 (2018) 366. https://doi.org/10.26855/jamc.2018.09.002.
- [15] X. Jiang & J. Jian, "Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with strong Wolfe line search", Journal of Computational and Applied Mathematics 348 (2019) 525. https://doi.org/10.1016/j.cam. 2018.09.012.
- [16] Y. H. Dai & L. Z. Liao, "New conjugacy conditions and related nonlinear conjugate gradient method", Appl. Math. Optim. 43 (2001) 87. https://doi. org/10.1007/s002450010019.

- [17] S. Babaie-Kafaki & R. Ghanbari, "The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices", Eur. J. Opt. Res. 234 (2014) 625. https://doi.org/10.1016/j.ejor.2013.11.012.
- [18] S. Babaie-Kafaki & R. Ghanbari, "Two adaptive Dai-Liao nonlinear conjugate gradient methods", Iran J. Sci. Technol. Trans. Sci. 42 (2018) 1505. https://doi.org/10.1007/s40995-017-0271-4.
- [19] N. Salihu, M. R. Odekunle, A. M. Saleh & S. Salihu, "A Dai-Liao hybrid Hestenes-Stiefel and Fletcher-Reeves methods for unconstrained optimization", Int. J. Ind. Optim. 2 (2021) 33. https://doi.org/10.12928/IJIO.V2II. 3054.
- [20] M. Lofti & S. M. Hosseini, "An efficient Dai-Liao type conjugate gradient method by reformulating the CG parameter in the search direction equation", Journal of Computational and Applied Mathematics **371** (2019) 112708. https://doi.org/10.1016/j.cam.2019.112708.
- [21] O. B. Akinduko, "A new conjugate gradient method with sufficient descent property", Earthline J. Math. Sci. 6 (2021) 163. https://doi.org/10.34198/ EJMS.6121.163174.
- [22] O. B. Onuoha, "A sufficient descent Dai-Liao type conjugate gradient update parameter", Earthline Journal of Mathematical Sciences 13 (2023) 353. https://doi.org/10.34198/ejms.13223.353368.
- [23] A. H. Sheeko & G. M. Al-Naemi, "Global convergence condition for a new spectra conjugate gradient method for large-scale optimization", J. Phys. Conf. Ser. 1879 (2021) 032001. https://doi.org/10.1088/1742-6596/1879/ 3/032001.
- [24] C. Ahmed & B. Taher, "Global convergence of new conjugate gradient method with inexact line search", International Journal of Electrical and Computer Engineering 11 (2021) 1469. https://doi.org/10.11591/ijece. v11i2.pp1469-1475.
- [25] A. Alhawarat, G. Alhamzi, I. Masmali & Z. Salleh, "A descent four-term conjugate gradient method with global convergence properties for largescale unconstrained optimization problems", Mathematical Problems in Engineering 2021 (2021) 6219062. https://doi.org/10.1155/2021/6219062.
- [26] P. Wolfe, "Convergence conditions for ascent methods", SIAM J. Optim. (1969) 226. https://doi.org/10.1137/1011036.

- [27] O. O. O. Yousif, M. A. Y. Mohammed, M. A. Saleh & M. K. Elbashir, "A criterion for the global convergence of conjugate gradient methods under strong Wolfe line search", Journal of King Saud University-Science 34 (2022) 102281. https://doi.org/10.1016/j.jksus.2022.102281.
- [28] P. Kaelo, P. Mtagulwa & M. V. Thuto, "A globally convergent hybrid conjugate gradient method with strong Wolfe conditions for unconstrained optimization", Mathematical Sciences 14 (2020) 1. https://doi.org/10.1007/ s40096-019-00310-y.
- [29] S. liu & Y. Huang, "Several guaranteed descent conjugate gradient methods for unconstrained optimization", Journal of Applied Mathematics 2014 (2014) 825958. https://doi.org/10.1155/2014/825958.
- [30] O. O. Yousif, "The convergence properties of RMIL+ conjugate gradient method under strong Wolfe line search", Appl. Math. Comp. 367 (2020) 124777. https://doi.org/10.1016/j.amc.2019.124777.
- [31] A. Alhawarat, N. T. Trung & Z. Salleh, "Conjugate gradient method: a developed version to resolve unconstrained optimization problems", Journal of Computer Science 16 (2020) 1220. https://doi.org/10.3844/jcssp.2020. 1220.1228.
- [32] P. Mtagulwa & P. Kaelo, "An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems", Applied Numerical Mathematics 145 (2019) 111. https://doi.org/10.1016/ j.apnum.2019.06.003.
- [33] J. Nocedal & S. J. Wright, Numerical Optimization, Springer-Verlag Inc., New York, 1999. https://doi.org/10.1007/b98874.
- [34] I. Bongartz, A. R. Conn, N. I. M. Gould & P. L. Toint, "CUTE: Constrained and unconstrained testing environments", ACM Trans. Math. Softw. 21 (1995) 123. https://doi.org/10.1145/200979.201043.
- [35] N. Andrei, "An unconstrained optimization test functions collection", Adv. Model. Optim. 10 (2008a) 147. https://camo.ici.ro/journal/vol10/v10a10. pdf.
- [36] E. D. Dolan & J. J. More, "Benchmarking optimization software with performance profiles", Math. Program. 91 (2002) 201. https://doi.org/10.1007/ s101070100623.