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A B S T R A C T

This article focuses on formulating the Asymptotic Mean Integrated Squared Error
(AMISE) scheme for d-dimensional fourth-order beta polynomial kernels in the context
of kernel density estimation. The primary objective is to assess how this scheme
influences the convergence rate, which directly impacts the speed at which the estimated
density converges to the true density, contributing to bias reduction. The article employs
AMISE as a metric to quantify the overall dissimilarity between the estimated density f̂
and the true density f . Quantitatively, the proposed convergence scheme is compared to
existing ones by Deheuvels and Jones et al. across various scenarios of sample sizes and
dimensionalities. The study’s findings provide compelling evidence that fourth-order
beta polynomial kernels exhibit a significantly faster convergence rate compared to
the rates documented in the literature. This accelerated convergence rate implies a
substantial improvement in bias reduction capabilities. The results underscore the
potential effectiveness of fourth-order beta polynomial kernels as a powerful tool for
enhancing the accuracy of kernel density estimation tasks.
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1. INTRODUCTION
Density estimation, a fundamental aspect of statistical analy-

sis, involves deriving insights into probability density functions
based on observed data [1]. Two primary approaches in this
field are parametric and nonparametric methods. Nonparamet-
ric methods, particularly kernel density estimation (KDE), have
gained prominence for their versatility in avoiding assumptions
about specific density forms and their applicability across vari-
ous scenarios, including multivariate analysis [2].

Significant research spanning from the 1950s onwards has fo-
cused on optimizing bandwidth selection for univariate KDE [3–
5]. The test graph method introduced by Sliverman [6], char-
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acterized by swift convergence and consistent performance, has
been influential. Scott and Factor [7] explored the bandwidth’s
impact on bias, while Rudemo [8] focused on minimizing the
mean integrated squared error (MISE) to identify optimal band-
width choices.

Multivariate Kernel Density Estimation (MKDE) has wit-
nessed noteworthy contributions, encompassing diverse parame-
terizations and optimal bandwidths for bivariate density estima-
tion, as outlined by Wand and Jones [9]. Adaptive techniques,
tailoring smoothing based on local data features, have emerged
through the work of Bowman and Foster [10]. Wand and Jones
[2] extended KDE to higher dimensions, deriving asymptotic and
exact mean integrated squared error results. Duong and Hazel-
ton [11] explored plug-in bandwidth matrices for bivariate esti-
mation.

To address potential bias, researchers have explored higher-

https://nsps.org.ng
https://flayoophl.com
https://https://flayoophl.com/journals/index.php/rans
https://flayoophl.com
https://nsps.org.ng
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


2 Afere / Recent Advances in Natural Sciences 1 (2023) 29

order kernels in KDE [12, 13]. Additionally, investigations into
convergence rates and optimal bandwidth performance have been
conducted by Wand and Jones [2], Jones and Signorini [13],
Chacón [14], Duong and Hazelton [15], Hall and Marron [16],
Hall et al. [17], Kimari et al. [18], and Sheather and Jones [19].
Recent research by Siloko et al. [20] has focused on reducing

the AMISE in KDE. Their exploration involved techniques re-
lated to kernel density derivatives and kernel boosting, revealing
that an increase in kernel derivatives and the number of boost-
ing steps can effectively decrease AMISE. KDE plays a pivotal
role in exploratory data analysis and statistical visualization due
to its simplicity, interpretability, and wide applicability, making
it a valuable tool for data analysis. Ongoing endeavors aim to
develop generalized convergence strategies that reduce AMISE
while preserving the statistical characteristics of real-world ob-
servations.
Within the context of KDE, for a given random sam-

ple X1,X2, . . . ,Xn drawn from a common density f , the d-
dimensional kernel density estimator is defined as follows:

f̂H(x) =
1

n |H|

n∑
i=1

K (H(x − Xi)). (1)

Here, x = (x1, x2, · · · , xd )T and Xi = (Xi1,Xi2, · · · ,Xid )T, i =
1, . . . , n. H is a symmetric positive definite d × d matrix called
the bandwidth matrix, and K is a d-variate kernel function sat-
isfying

∫
Rd K (t)dt = 1. In this article, we adopt the parameter-

izations H = h2Id proposed by Cacoullos [21] for selecting the
bandwidths. This choice allows for closed-form expressions for
both the optimal bandwidth and AMISE [17–19, 22, 23].The d-
dimensional kernel density estimator, using the chosen parame-
terisations as discussed byWand and Jones [2], can be expressed
as follows:

f̂H(x) =
1
nhd

n∑
i=1

K (
x − Xi

h
). (2)

The central objective of this study is to explore and elucidate the
convergence rates within the domain of kernel density estima-
tion. Convergence rates play a pivotal role in delineating how
rapidly the estimated density, denoted as f̂ (x), approaches the
true density, represented by f (x). This exploration is particu-
larly significant as it extends observations from previous research
conducted in univariate settings by Sliverman [1] and Afere [12]
to the more complex and intricate landscape of higher-order d-
dimensional kernels.
The phenomenon of convergence rates serves as a crucial in-

dicator, offering insights into the efficiency and speed of the esti-
mation process. Faster convergence rates imply a swifter approx-
imation of the estimated density to the underlying true density.
Such insights are pivotal in understanding and improving the ac-
curacy of kernel density estimation, especially when dealingwith
multivariate scenarios.
The subsequent sections of this article delve into a detailed

examination of the convergence properties and behavior specifi-
cally related to fourth-order multivariate kernels. Building upon
the well-established convergence schemes for second-order ker-
nels documented in the existing literature [1, 2], our focus piv-
ots towards the nuances and intricacies associated with fourth-
order kernels. This shift in focus is motivated by the desire to

enhance our understanding of convergence dynamics in higher-
dimensional spaces.
The structure of this work unfolds as follows: Section 2 lays

the foundation for this article, discussing the framework and con-
vergence schemes for fourth-order multivariate kernels. Further-
more, Section 3 is dedicated to the derivation of a generalized
fourth-order convergence scheme for AMISE. This involves a
rigorous mathematical exploration, providing explicit formulas
that capture the essence of the convergence behavior in this spe-
cific context.
In Section 4, we delve into the detailed quantitative valida-

tion of the outcomes derived in our study. This section is in-
strumental in providing a rigorous assessment of the reliability,
accuracy, and applicability of the proposed convergence schemes
for fourth-order multivariate kernels. The validation process in-
volves a meticulous comparison with the outcomes reported by
Deheuvels (see Scott [24] pg 189) and Jones et al. (see Chacón
and Duong [25] pg 70), encompassing various sample sizes and
dimensionalities.
Finally, in Section 5, we embark on a meticulous examina-

tion of the results obtained from our study. This examination
critically assesses the implications and importance of the ob-
served convergence rates in kernel density estimation. Conclu-
sions drawn from this analysis contribute to a broader under-
standing of the efficiency of the proposed convergence rate.

2. CONVERGENCE SCHEMES FOR THE FOURTH-ORDER
KERNELS
In the landscape of this research domain, it is a prevalent prac-

tice to gauge the effectiveness of the density function f by em-
ploying the Mean Integrated Squared Error (MISE). However,
the derivation of MISE in closed form is often unattainable, ne-
cessitating the adoption of an asymptotic approximation as a
pragmatic solution. This approximation serves as an estimate for
the MISE, providing a means to evaluate the performance of the
density function under consideration. The asymptotic approxi-
mation takes the following form:

AMISEf̂H(x) = AISBf̂H(x) + AIVf̂H(x), (3)

where

AISBf̂H(x) =
∫
Rd

bias2 f̂H(x)dx, (4)

and

AIVf̂H(x) =
∫
Rd

varf̂H(x)dx. (5)

The basic assumptions for any multivariate second-order sym-
metric kernels are:

i.
∫
Rd
K (t)dt = 1

ii.
∫
Rd

tK (t)dt = 0d

iii.
∫
Rd

(tT t)K (t)dt = K2Id , 0.


(6)

However, in 1962, Parzen [26] introduced the concept of using
kernels that can take both negative and positive values. Conse-
quently, for the purpose of achieving a fourth-order estimation,
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we relax the assumptions outlined in Eq.(6) and obtain the fol-
lowing expression:

i.
∫
Rd
K (t)dt = 1

ii.
∫
Rd

(tT t)K (t)dt = 0d

iii.
∫
Rd

(tT t)2
K (t)dt = K4Id , 0.


(7)

Now, if the Taylor series expansion of f (x − tH
1
2 ) up to the fifth

term is used, and on application of the assumptions in Eq.(6) with
the parametrisation H = h2Id , the AMISE in Eq.(3) results to:

AMISEf̂H(x) = (4!)−2h8(K4Id )2
∥∥∥∇4f (x)

∥∥∥2
2+(nhd )−1 ∥K∥22 .(8)

On differentiating Eq.(8) with respect to h and minimizing ac-
cordingly, we obtain h as:

hAMISEf̂H(x) = ((4!)2d8−1 ∥K∥22 (K4.Id )−2×

(
∥∥∥∇4f (x)

∥∥∥2
2)
−1

)
1

d+8 n−
1

d+8 .
(9)

Substituting Eq.(9) into Eq.(8), we have:

AMISEf̂H(x) =
d + 8

8d
(

8
(4!)2 )

d
d+8

(d(K4Id )2×∥∥∥∇4f (x)
∥∥∥2

2 ∥K∥
2
2 )

8
d+8 n−

8
d+8 .

(10)

Themain significance from this is that the convergence rate n−
4

d+4

as proposed by Deheuvels in 1977 (see Scott [24] pg 189) de-
creases to n−

8
d+8 proposed by Jones et al when kernels meeting

the conditions in Eq.(7) are applied (see Chacón and Duong [25]
pg 70). Section 3 below presents our theorem which is an im-
provement to the result in Eq.(10) if fourth-order kernels is used.

3. THE PROPOSED GENERALIZED CONVERGENCE SCHEME
In this section, we introduce a comprehensive framework that

builds upon the advancements made in Eqs.(9) and (10). We
present Theorem 1, which encapsulates the enhanced outcomes
achieved through this scheme.

Theorem 1. If K (t) is any differentiable d-dimensional fourth-
order kernel that is parameterized by H = h2Id satisfying the
conditions in Eq.(7), and K2m+2Id represents the (2m + 2)th-
moment of this kernel, with

∥∥∥∇2m=2f (x)
∥∥∥2

2 being the general-
ized L2-norm of d-dimensional Gaussian distribution with mean
µ = (µ1, µ2, · · · , µd )T , then the generalized asymptotic mean in-
tegrated squared error is given as:

AMISE2m � (
d + 4m + 4
d(4m + 4)

)(
4m + 4

((2m + 2)!)2 )
d

d+4m+4

(d ∥K∥22)
4m+4

d+4m+4 ×

((K2m+2 · Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

Proof. The bias term is given by:

biasf̂H(x) = Ef̂H(x) − f (x). (11)

If we substitute Eq.(2) into Eq.(11) and simplify, we have:

biasf̂H(x) =
∫
Rd
K (t)f (x − tH

1
2 )dt − f (x). (12)

Now, on using the multivariate Taylor’s series expansion up to
(m + 1)st-times on Eq.(12), we have:

biasf̂H(x) =
∫
Rd
K (t)(f (x) − tr{tTDf H

1
2 }+

1
2!
tr{(tTt)H

1
2Hf H

1
2 −

1
3!
tr{tTDf H

1
2×

(tr{(tTt)H
1
2Hf H

1
2 )} + · · · −

1
(2m + 1)!

tr{tTDf H
1
2×

[(tTt)H
1
2Hf H

1
2 ) · · · (tTt)H

1
2Hf H

1
2 )︸                                      ︷︷                                      ︸

m times

]} +
1

(2m + 2)!
tr{tT[

(tTt)H
1
2Hf H

1
2 ) · · · (tTt)H

1
2Hf H

1
2 )︸                                      ︷︷                                      ︸

(m+1) times

]} − · · · )dt − f (x),

where, Df (x) is the vector of first-order partial derivatives of f
and Hf (x) is the Hessian matrix of the d × d matrix having (i,j)

entry equal to ∂
2f (x)
∂xi∂xj

= 0, i , j.
On expanding the last equation further, we have:

Biasf̂H(x) = f (x)
∫
Rd
K (t)dt − tr{(

∫
Rd

tTK (t)dt)(Df H
1
2 )}

+
1
2!
tr{(
∫
Rd

(tTt)K (t)dt)(H
1
2Hf H

1
2 )}

−
1
3!
tr{(
∫
Rd

tT(tTt)K (t)dt)(Df H
1
2 )(H

1
2Hf H

1
2 )} + · · ·

−
1

(2m + 1)!
tr{(
∫
Rd

tT[(tTt) · · · (tTt)︸         ︷︷         ︸
m times

]K (t)dt)×

(Df H
1
2 )[(H

1
2Hf H

1
2 ) · · · (H

1
2Hf H

1
2 )︸                            ︷︷                            ︸

(m times)

]}+

1
(2m + 2)!

tr{(
∫
Rd

[(tTt) · · · (tTt)︸         ︷︷         ︸
(m+1) times

](tTt)K (t)dt)×

[(H
1
2Hf H

1
2 ) · · · (H

1
2Hf H

1
2 )︸                            ︷︷                            ︸

(m+1) times

]} − · · · + · · · − f (x).

(13)

Imposition of the moment conditions of Eq.(7) and the (2m+ 2)-
th moment of the statement of the theorem in Eq.(13), Eq.(13)
reduces to:

Biasf̂H(x) =
1

(2m + 2)!
tr{(
∫
Rd

(tTt)m+1
K (t)dt)×

(H
1
2Hf H

1
2 )
m+1
} + o((tTt)H

1
2 )
m+1
.

(14)

The trace of the Hessian matrix (Hf (x)) in Eq.(14) is defined by
∇2f (x). With this definition, the bias can be expressed as:

Biasf̂H(x) =
1

(2m + 2)!
[
∫
Rd

(tTt)m+1
K (t)dt]×

[∇2f (x)]
m+1

[tr(H)m+1] + o((tTt)H)
m+1
.

(15)

Squaring both sides of Eq.(15) and using the bandwidth matrix
H = h2Id and then substituting into Eq.(4), the AISB is obtained
as:

AISBf̂H(x) =
1

((2m + 2)!)2 [
∫
Rd

(tTt)m+1
K (t)dt]2×

[∇2m+2f (x)]
2
[h4m+4].

(16)



4 Afere / Recent Advances in Natural Sciences 1 (2023) 29

Also, on using the (2m + 2)-th moment in the statement of the
Theorem, Eq.(16) becomes:

AISBf̂H(x) =
1

((2m + 2)!)2 (K2m+2.Id )2

(
∥∥∥∇2m+2f (x)

∥∥∥2
2)

2
h4m+4.

(17)

The variance term is given by:

Varf̂H(x) = E2 f̂H(x) − [Ef̂H(x)]
2
. (18)

On substituting Eq.(18) into Eq.(5) and using the necessary as-
sumptions as in the case of bias, we have:

Varf̂H(x) = (nH
1
2 )
−1
∫
Rd
K 2(t)f (x − tH

1
2 )dt−

((nH
1
2 )
−1
∫
Rd
K (t)f (x − tH

1
2 )dt)2.

(19)

Hence, following similar algebraic variable substitution and Tay-
lor series expansion argument as in the case of bias and using all
the necessary assumptions, Eq.(19) becomes:

Varf̂H(x) = (n |H|
1
2 ) ∥K∥22 f (x) + o(n |H|

1
2 )−1, (20)

where ∥K∥22 =
∫
Rd K 2(t)dt is the d-dimensional L2-norm of K (t).

On substituting Eq.(20) into Eq.(5), the resulting equation be-
comes:

AIVf̂H(x) =
∫
Rd

Varf̂H(x)dx = (nH
1
2 )−1 ∥K∥22 . (21)

Also, on using the parametrisation H = h2Id , Eq.(21) becomes:

AIVf̂H(x) = (nhd )−1 ∥K∥22 (22)

Plugging back Eqs.(17) and (22) into Eq.(3), we have:

AMISEf̂H(x) =
h4m+4

((2m + 2)!)2 [K2m+2 � Id ]2×

||∇2m+2f (x)||22 + (nhd )
−1
||K ||22.

(23)

On differentiating Eq.(23) with respect to h, we have:

∂AMISEf̂H(x)
∂h

= (4m + 4)
h4m+3

((2m + 2)!)2 [K2m+2Id ]2×∥∥∥∇2m+2f (x)
∥∥∥2

2 − dn
−1h−d

−1
∥K∥22 .

But at the minimum or maximum point, ∂AMISEf̂H(x)
∂h = 0. There-

fore,

(4m + 4)
h4m+3

((2m + 2)!)2 [K2m+2Id ]2
∥∥∥∇2m+2f (x)

∥∥∥2
2 = dn

−1h−d
−1
∥K∥22

⇒ (4m + 4)
(h4m+3)(hd+1)
((2m + 2)!)2 [K2m+2Id ]2

∥∥∥∇2m+2f (x)
∥∥∥2

2 = dn
−1 ∥K∥22

⇒ hd+4m+4 = n−1 ((2m + 2)!)2

(4m + 4)
∥K∥22

d

[K2m+2Id ]2
∥∥∥∇2m+2f (x)

∥∥∥2
2

.

Hence, the approximate fourth-order optimal bandwidth, in the
sense of minimizing Eq.(23) with respect to h, is of the form:

h =

 ((2m + 2)!)2

(4m + 4)∥K∥22

 1
d+4m+4

×

 d
[K2m+2Id ]2∥∇2m+2f (x)∥22

 1
d+4m+4

n−
1

d+4m+4 .

(24)

On substituting Eq.(24) into Eq.(23), we have:

AMISEf̂H(x) =
1

((2m + 2)!)2 [
((2m + 2)!)2

4m + 4
∥K∥22

(K2m+2Id )2×

d∥∥∥∇2m+2f (x)
∥∥∥2

2

]
4m+4

d+4m+4 (K2m+2Id )2
∥∥∥∇2m+2f (x)

∥∥∥2
2 n
− 4m+4
d+4m+4+

n−1((
((2m + 2)!)2

(4m + 4)
∥K∥22

d

[K2m+2Id ]2
∥∥∥∇2m+2f (x)

∥∥∥2
2

)

1
d+4m+4

×

n−
1

d+4m+4 )−d ∥K∥22 .

=
1

(((2m + 2)!)2)
d

d+4m+4

(4m + 4)−
4m+4

d+4m+4 d
4m+4

d+4m+4 (∥K∥22)
4m+4

d+4m+4

((K2m+2Id )2)
d

d+4m+4 (∥K∥22)(
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4+

(4m + 4)
d

d+4m+4 (((2m + 2)!)2)
− d
d+4m+4 d−

d
d+4m+4 (∥K∥22)

4m+4
d+4m+4

((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

= [
1

(((2m + 2)!)2)
d

d+4m+4

(
d + (4m + 4)

d+4m+4
d+4m+4

d
d

d+4m+4 (4m + 4)
4m+4

d+4m+4

)]×

(∥K∥22)
4m+4

d+4m+4 ((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

= [
1

(((2m + 2)!)2)
d

d+4m+4

(
d + 4m + 4

d
d

d+4m+4 (4m + 4)
4m+4

d+4m+4

)]×

(∥K∥22)
4m+4

d+4m+4 ((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

= (
d + 4m + 4

(4m + 4)
)[

(4m + 4)

d
d

d+4m+4 ((2m + 2)!)2
]

d
d+4m+4

(∥K∥22)
4m+4

d+4m+4×

((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

=
1
d

(
d + 4m + 4

(4m + 4)
)[

(4m + 4)
((2m + 2)!)2 ]

d
d+4m+4

d1− d
d+4m+4 (∥K∥22)

4m+4
d+4m+4×

((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

= (
d + 4m + 4
d(4m + 4)

)[
(4m + 4)

((2m + 2)!)2 ]
d

d+4m+4

(d ∥K∥22)
4m+4

d+4m+4×

((K2m+2Id )2)
d

d+4m+4 (
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

Thus, the expression for the generalized AMISE, independent of
the optimal bandwidth (h), can be formulated as follows:

AMISEf̂H(x) � (
d + 4m + 4
d(4m + 4)

)[
(4m + 4)

((2m + 2)!)2 ]
d

d+4m+4

×

(d ∥K∥22)
4m+4

d+4m+4 ((K2m+2Id )2)
d

d+4m+4×

(
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4

· n−
4m+4

d+4m+4 .

(25)
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Adopting the nomenclature AMISE2m for AMISEf̂H(x), Eq.(25)
becomes:

AMISE2m � (
d + 4m + 4
d(4m + 4)

)[
(4m + 4)

((2m + 2)!)2 ]
d

d+4m+4

×

(d ∥K∥22)
4m+4

d+4m+4 ((K2m+2Id )2)
d

d+4m+4×

(
∥∥∥∇2m+2f (x)

∥∥∥2
2)

d
d+4m+4 n−

4m+4
d+4m+4 .

(26)

By comparing Eqs.(10) and (26), we observe a significant
improvement in the convergence rate of the global error, also
known as AMISE. The rate has transitioned from n−

8
d+8 to

n−
4m+4

d+4m+4 , showcasing a more favorable convergence behavior.
This improvement has been made possible due to the regular-
ity conditions outlined in the statement of the theorem (that is,∫
Rd (tT t)m+1K (t)dt = K2m+2Id ). The regularity conditions not
only contribute to the reduction in global error but also play a cru-
cial role in establishing the generalized convergence schemes for
any d-dimensional fourth-order polynomial symmetric kernels.
Thus, these conditions provide valuable insights and enable us
to achieve improved convergence performance in the estimation
process.

4. QUANTITATIVE VALIDATION OF RESULTS
In this section, our primary aim is to validate and reinforce the

findings delineated in Section 3 through a comprehensive com-
parison with the outcomes reported by Deheuvels (see Scott [24]
pg 189) and Jones et al. (see Chacón and Duong [25] pg 70).
The objective of this quantitative validation is twofold. Firstly,
it aims to affirm the robustness and precision of the obtained re-
sults by scrutinizing their consistency with established findings
in the literature. Secondly, it seeks to elucidate the generalizabil-
ity of our proposed convergence scheme across diverse scenarios
of sample sizes and dimensionality. This thorough examination
is crucial for bolstering the credibility and broader applicability
of our research findings.

The detailed tabulated results presented in Tables 1 through 3
serve as the foundation for this quantitative validation. These ta-
bles provide a comprehensive comparison between the proposed
convergence rate (PG) and those presented by Jones et al. (JMH)
[25] and, Deheuvels (PD) [24]. The examination spans various
sample sizes and dimensionalities, allowing for a nuanced un-
derstanding of how well our proposed schemes perform across a
spectrum of scenarios.

By subjecting our results to this quantitative scrutiny, we aim
to fortify the scientific rigor of our study and provide a clear as-
sessment of the effectiveness and reliability of the proposed con-
vergence scheme for fourth-order multivariate kernels. This pro-
cess contributes to the comprehensive evaluation of our research
findings and enhances their value in the broader context of kernel
density estimation.

Table 1. Comparing the proposed convergence rate (PG) with the convergence
rates presented by Jones et al. (JMH) [25] and, Deheuvels (PD) [24] across var-
ious sample sizes (n) when d = 1.

n PG JMH PD
10 0.1003750000 0.1291550000 0.1584890000
25 0.0402118000 0.0571988000 0.0761462000
300 0.0033656200 0.0062822400 0.0104304000

1,000 0.0010119300 0.0021544300 0.0039810700
100,000 0.0000102135 0.0000359381 0.0001000000

In Table 1, a comparative analysis of the proposed conver-
gence rate (PG) against Jones et al. (JMH) [25] and, Deheuvels
(PD) [24] is presented. The comparison is conducted across var-
ious sample sizes (n) while maintaining a fixed dimensionality
(d = 1). As the sample size increases, all approaches exhibit a
decline in convergence rates. Notably, PG consistently demon-
strates the fastest convergence, followed by JMH and PD, which
generally exhibit higher rates than JMH. This observation under-
scores the superior performance of PG in achieving faster con-
vergence under the specified conditions.

Table 2. Comparing the proposed convergence rate (PG) with the convergence
rates presented by Jones et al. (JMH) [25] and, Deheuvels (PD) [24] across var-
ious sample sizes (n) when d = 2.

n PG JMH PD
10 0.1007500000 0.1584890000 0.2154430000
25 0.0404287000 0.0761462000 0.1169610000
300 0.0034009200 0.0104304000 0.0223144000

1,000 0.0010254600 0.0039810700 0.0100000000
100,000 0.0000105033 0.0001000000 0.0004641590

Convergence rates (PG, JMH, and PD) are compared for vari-
ous sample sizes (n) and fixed dimensionality (d = 2) in Table 2.
All approaches see a drop in convergence rates as sample sizes
increase. Compared to JMH and PD, PG regularly shows faster
convergence; the differences get more noticeable as the sample
size grows.

Table 3. Comparing the proposed convergence rate (PG) with the convergence
rates presented by Jones et al. (JMH) [25] and, Deheuvels (PD) [24] across var-
ious sample sizes (n) when d = 3.

n PG JMH PD
10 0.1011260000 0.1873820000 0.2682700000
25 0.0406497000 0.0962313000 0.1589190000
300 0.0034392900 0.0157927000 0.0384151000

1,000 0.0010407700 0.0065793300 0.0193070000
100,000 0.0000109125 0.0002310130 0.0013895000

Table 3 illustrates the variation in convergence rates (PG,
JMH, and PD) with changes in sample sizes. Larger sample sizes
are associated with decreased convergence rates, and notably, PG
consistently demonstrates better performance compared to JMH
and PD.

5. RESULTS AND CONCLUSION
Upon comparing Eqs. (10) and (26), a clear improvement

in the convergence rate is observed for the global error of any
fourth-order polynomial symmetric kernel. The transition from
n−

8
d+8 (for d = 1, 2, · · · , < ∞) in Eq. (10) to n−

4m+4
d+4m+4 (for
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m = 1, 2, · · · , < ∞; d = 1, 2, · · · , < ∞) in Eq. (26) signifies
a notable enhancement in convergence behavior across varying
dimensions and orders.
Moreover, obtaining a closed-form solution for the bandwidth

and minimizing the generalized AMISE expression for fourth-
order kernels yields noteworthy insights. Initially, the introduc-
tion of negative kernels proved to be a pivotal factor in enhancing
MISE. This deliberate integration of negative kernels represents
a substantial advancement in the overall efficiency of the estima-
tion process, contributing significantly to the precision and ac-
curacy of our methodology. Additionally, the AMISE of fourth-
order kernels exhibits a swifter convergence rate compared to
second-order kernels. However, it is crucial to recognize that this
accelerated rate remains slower than the univariate case (d = 1)
owing to the impact of the curse of dimensionality on the con-
vergence rate, Scott [24].
Quantitatively validating these results, Table 1 compares the

proposed convergence rate (PG) with Jones et al. (JMH) and,
Deheuvels (PD) across various sample sizes (n) when the dimen-
sionality (d) is fixed at 1. Larger sample sizes contribute to de-
creased convergence rates for all methods, with PG consistently
exhibiting the lowest values, indicating the fastest convergence
rate. The effectiveness of PG in achieving faster convergence
remains consistent across all sample sizes, underscoring the im-
portance of ample data for accurate estimates in scenarios with
d = 1.
Table 2 extends this comparison to a dimensionality of 2. In-

creasing sample sizes leads to decreased convergence rates for all
methods, and PG consistently demonstrates lower values com-
pared to JMH and PD, with differences becoming more pro-
nounced as sample size increases. The reduction in conver-
gence rates with larger sample sizes emphasizes the importance
of sufficient data for accurate estimation, particularly in a higher-
dimensional space (d = 2). The observed differences between
PG and other methods are more substantial, indicating a poten-
tially more significant practical impact.
Table 3 further extends the analysis to a dimensionality of

3. Larger sample sizes again result in decreased convergence
rates for all methods, and PG consistently exhibits lower values
compared to JMH and PD, with differences becoming more pro-
nounced with increasing sample size. The reduction in conver-
gence rates with larger sample sizes underscores the importance
of adequate data for accurate estimation, particularly in a higher-
dimensional space (d = 3). The substantial differences between
PG and other methods also highlight the potential practical im-
pact of PG in this higher-dimensional scenario.
In summary, the tables collectively suggest that the proposed

method (PG) consistently outperforms existing methods (JMH,
PD) across varying dimensionalities. PG’s superiority in achiev-
ing a faster convergence rate is particularly evident in scenarios
with larger sample sizes, emphasizing its potential advantages in
practical applications.
In conclusion, our extensive investigation, encompassing both

analytical and quantitative analyses, has revealed the superior
performance of the new convergence rate compared to its prede-
cessors. The new convergence scheme for fourth-order kernels
not only reduces bias but also improves convergence rates, espe-
cially in higher dimensions. So, using this generalized conver-

gence scheme for fourth-order kernels helps address challenges
related to increasing dimensionality during the estimation proce-
dure.
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