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A B S T R A C T

Machine learning and deep learning approaches have been extensively studied across
various fields, significantly contributing to the successful resolution of numerous
problems. Examples include image classification, computer vision applications, and
natural language processing. Owing to their powerful capabilities, they have not only
made significant contributions in the fields above but also increasingly been applied
to time series analysis, particularly in analyzing financial time series to forecast the
volatility and correlation among stock markets. Researchers have proposed hybrid
models that combine machine learning and deep learning approaches with statistical
and econometric models to enhance time series analysis and forecasting. In this work,
the dynamic conditional correlation (DCC) model, as an econometric model, and
multivariate convolutional neural networks (MCNNs), as deep learning models, are
employed to construct hybrid models to enhance the forecasts of dynamic volatility and
correlation among stock markets. Two methods are presented for combining the DCC
model with the convolutional neural network (CNN) model. The results show that the
best way to combine the DCC model and the CNN model is to use the outputs of the
CNN model as inputs to the DCC model. The hybrid DCC-MCNN model demonstrates
stronger performance across both in-sample and out-of-sample accuracy measures, such
as the root mean square error (RMSE) and mean absolute error (MAE). Specifically, the
hybrid DCC-MCNN model emerges as the top performer among the evaluated models,
surpassing both the single model approaches and the hybrid MCNN-DCC model in
forecasting time-varying volatility and correlation among stock markets.
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1. INTRODUCTION

It is widely recognized that accurate analysis and prediction of
temporal relationships within data are challenging because of the
presence of nonlinear trends, heavy-tailed distributions, and in-
herent noise [1]. These characteristics are particularly prevalent
in financial time series, especially in stock market data. When
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models for forecasting financial data are developed, it is essen-
tial that they can learn nonlinear dependencies within the data
and exhibit high resistance to noise. Traditional time series mod-
els such as VAR and VARMA are inadequate for capturing these
nonlinear patterns. Furthermore, financial time-series models,
including GARCH, EGARCH, and EWMA, provide both ad-
vantages and limitations in forecasting stock market volatility.
These models exploit various characteristics, including leverage
effects, excess kurtosis, and volatility clustering, which are com-
monly observed in financial time-series data [2].
In recent years, machine learning and deep learning [3] ap-

proaches have been extensively studied across various fields, sig-
nificantly contributing to the successful resolution of numerous
problems. For instance, Ref. [4] employed random forest for
classification prediction modeling, Ref. [5] utilized support vec-
tor machine and random forest for image classification. Convo-
lutional neural networks (CNNs) [6, 7] have demonstrated out-
standing performance in computer vision applications. Similarly,
recurrent neural network (RNN) models have gained increasing
importance in natural language processing (NLP). Owing to their
powerful capabilities, they have not only made significant con-
tributions in the aforementioned fields but have also increasingly
been utilized in time series analysis [8, 9]. They have been em-
ployed for univariate [10] and multivariate time series [11–14].
They have also been used for different purposes such as anomaly
detection in time series [15], classification of audio signals [16],
and feature extraction for human activity recognition [13]. In
addition, they have been applied to different time series data and
prediction tasks [17] such as weather prediction [18], forecast-
ing energy [19, 20], and forecasting crude oil prices [21]. They
have also been used extensively in financial time series analy-
sis, including forecasting cryptocurrency volatility [22], forex
exchange [23] , stock prices [24], and stock market returns.
For efficient use of machine learning and deep learning in

time series analysis and forecasting, particularly in financial
time series, researchers have proposed hybrid models com-
bining machine learning algorithms with deep learning ap-
proaches. Other combinations include machine learning with
statistical/econometric models, as well as deep learning ap-
proaches integrated with statistical/econometric methods. Many
scholars have studied the application of machine learning meth-
ods, deep learning approaches, and their integration with statis-
tical and econometric models in time series modeling and fore-
casting. Ref. [25] offers a review of the advancements in deep
learning and unsupervised feature learning for time series issues
in general, while Ref. [26] provides an up-to-date review of ma-
chine learning applications in financial time series forecasting.
The review of Ref. [27] provides a thorough literature review
of deep learning studies on financial time series forecasting im-
plementation. More specifically, Ref. [28] surveyed the use of
deep neural networks in forecasting the stock market, highlight-
ing needs, challenges, and future directions. Ref. [29] examined
hybrid structures by reviewing over 150 papers that utilized var-
ious hybrid models in time series modeling and forecasting do-
mains, while Ref. [30] provided an experimental review on deep
learning architectures that used for time series forecasting.
Ref. [31] used gradient descent boosting, random forest, sup-

port vector machine, and artificial neural networks to improve

the accuracy of volatility forecasts made by hybrid models on
the basis of combinations of GARCH-type models and [32] con-
structed a hybrid model by integrating linear regression model
with deep belief networks for time series prediction and the re-
sults showed that the hybrid model exhibited high accuracy in
forecasting time series.
Ref. [33] developed a system using deep convolutional neural

networks (CNN) and novel planar feature representation meth-
ods to enhance the algorithmic trading frameworks. The sys-
tem is implemented and evaluated via historical datasets of the
Taiwan Stock Index Futures. The experimental results demon-
strate the effectiveness of deep learning techniques in their trad-
ing simulation application, highlighting their potential to model
noisy financial data and address complex issues in social sci-
ences. In line with the use of deep learning approaches in hy-
brid models, Ref. [34] introduces a novel time series forecasting
model named LS-DL. LS-DL incorporates convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and au-
toregressive (AR) models, leveraging periodic information from
time series data for both input and output processing. The deep
neural network component focuses on capturing local and long-
term dependencies within the time series, whereas the autore-
gressive model addresses issues related to sensitivity to input
scale changes. In experimental evaluations using four public
datasets, our model outperformed traditional models and GRU-
based models.
Comparing the performance of different deep learning models

for financial time series forecasting has attracted significant re-
search attention. For instance, Ref. [12] investigated this by test-
ing and analyzing convolutional networks, evaluating both their
conditional and unconditional performance in financial forecast-
ing tasks. The study includes data such as the S&P 500, the
volatility index, the CBOE interest rate, and various exchange
rates. The comparison extensively evaluates its performance
against that of the well-established autoregressive model and a
long short-term memory (LSTM) network. The findings demon-
strate that the convolutional network excels in regression-type
tasks, effectively learning dependencies within and across se-
ries without the need for extensive historical data. It proves to
be a time-efficient and straightforward alternative to recurrent-
type networks, consistently outperforming both linear and recur-
rent models. Ref. [11] constructs seven different models, with
three models utilizing CNN and four models employing LSTM,
for both univariate and multivariate time series. The experimen-
tal results indicated a significant variation in the accuracy and
execution speed of the models. Nevertheless, all the models
achieved a high level of accuracy in their forecasting outcomes.
Overall, the CNN-based models surpassed the LSTM counter-
parts in both execution speed and prediction accuracy.
Ref. [35] demonstrated the superiority of deep learning mod-

els over traditional machine learning methods in selecting time
series forecasting models by combining a CNN with a data aug-
mentation technique and comparing the results with the perfor-
mance of SVM and traditional time series image algorithms. In
contrast, Ref. [24] proposed combining a GRU with a CNN ar-
chitecture to identify financial market predictions based on return
predictive signals. Additionally, the authors trained their model
with an attention mechanism (GRU-CNN) and compared its per-
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formance with that of traditional deep learning models. The
experiments demonstrate that the enhanced GRU-CNN model
achieves better predictive performance than previous traditional
methods do. Statistically and economically, the existing GRU-
based model already delivers good accuracy and higher returns,
but the proposed GRU-CNN model performs slightly better than
the GRU-based model does.

In merging deep learning models with statistical and econo-
metric time series models, ANNs have been combined with
various types of GARCH models [36–39] as well as LSTM
[2, 40, 41] for enhancing volatility forecasts. The results of the
hybrid models outperformed the standalone deep learning and
statistical/econometric models, demonstrating the efficacy of hy-
brid approaches.

In this work, the DCC model, as an econometric model, and
MCNN, as a deep learning model, are employed to construct hy-
bridmodels to enhance the forecast of dynamic volatility and cor-
relations among stock markets. The rationale for using CNNs for
incorporating econometrics models to forecast time series data is
their ability to learn filters that capture recurring patterns within
the series, which can then be utilized to predict future values [12].
CNNs can automatically learn and extract features from raw data
without requiring prior knowledge or manual feature engineer-
ing. Additionally, CNNs can effectively handle noisy time series
by filtering out the noise at each successive layer, thereby creat-
ing a hierarchy of useful features and retaining only the mean-
ingful features [12].

The contributions of this work are as follows: first, a hybrid
model that combines the DCC model with a CNN is proposed.
Few studies have hybridized the DCC model with a deep learn-
ing model, and none have utilized CNNs for modeling dynamic
volatility and correlations between stock market returns. Sec-
ond, two methods for combining the DCC model with the CNN
model are presented. A comparison between the proposed mod-
els (DCC-CNN and CNN-DCC) and the single models (DCC
and CNN) is conducted. The results show that the best way
to combine the DCC model and the CNN model is to use the
outputs of the CNN model as inputs to the DCC model. This
hybrid DCC-CNN model achieves better performance in fore-
casting time-varying volatility and correlation among stock mar-
kets. Third, the efficacy and efficiency of the CNN model are
demonstrated in building hybrid models with volatility forecast-
ing models. The remainder of this paper is organized as follows:
Section 2 presents the methodology used in this work, and Sec-
tion 3 presents the proposed models and empirical results. The
discussion and conclusion are explained in Sections 4 and 5, re-
spectively.

2. METHODOLOGY
Dynamic Conditional Correlation (DCC) models have become
one of the most widely employed econometric approaches for fi-
nancial time series volatility modeling. Their widespread adop-
tion stems from demonstrated effectiveness in forecasting both
volatilities and correlations across economic and financial vari-
ables. The complex, nonlinear correlation structures among fi-
nancial variables necessitate more flexible models to accurately
capture these intricacies. In this context, convolutional neural
network (CNN) models provide a substantial advantage because

Figure 1. Methodology flowchart.

of their ability to model complex nonlinear relationships with-
out requiring predefined assumptions. To leverage the strengths
of both statistical and machine learning models, hybrid models
have gained considerable attention from researchers in the field
of financial time series modeling.

In this work, we sought to integrate the DCC model with the
MCNN model in two distinct ways, as illustrated in Figure 1,
following the method of Ref. [42] and compare the performance
of these hybrid models against that of the individual DCC and
MCNN models via various metrics. The first hybrid model, the
DCC-MCNN model, is constructed by converting the outputs
from the MCNNmodel into returns as inputs, see Figure 2. Con-
versely, the second hybrid model, the MCNN-DCC model, is
developed by transforming the outputs of the DCC model into
returns and utilizing them as inputs for the MCNN model as it
exhibits in Figure 3.
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Figure 2. DCC-MCNN model flowchart.

Figure 3. MCNN-DCC model flowchart.

2.1. DCC-GARCH MODEL
The DCC model, proposed by Engle (2002), consists of three
different equations structured in the following forms:

yt = µt + at , (1)

at = Σ
1
2
t εt , (2)

Σt = DtΓtDt , (3)

where in Equation (1), µt is a vector of expected value of yt , and
in Equation (2), εt is a vector of identical independent distribu-
tion (i.i.d) of errors with E(εt ) = 0 and E(εtε

′

t ) = I k .
Γt = (diag{Qt })−

1
2Qt (diag{Qt })−

1
2 , in Equation (3), and Qt =

[qij,t ] is the conditional time-dependent variance between series, i
and j defines the symmetric DCCmodel with the following form:

Qt = (1 − α − β)Q̄ + αet−1e
′

t−1 + βQt−1 , (4)

α, β > 0 are non-negative real numbers that satisfy 0 < α+β < 1
, and et−1e

′

t−1 is the lagged function of the standardized residuals.
Q̄ is unconditional covariance matrix of et .

Dt = diag{σ
1
2
11,t , ..., σ

1
2
kk ,t } is a diagonal matrix of square roots

of the conditional covariance matrix from univariate models.

3. PROPOSED MODEL AND EMPIRICAL RESULTS

3.1. DATA SOURCE AND DESCRIPTION
The dataset used in this work covers daily data from January 1,
2010, to December 30, 2022, comprising 3396 instances, and
it was sourced from finance.yahoo.com and includes five stock
markets: the JSE. JO from South Africa, S&P 500 from the USA,
KLSE fromMalaysia, FTSE-100 from the UK, and BSESN from
India. Daily returns are computed via the natural logarithm of
adjusted closing prices: yit = ln

(
pi,t
pi,t−1

)
for each market i at time

t .
Figures 4 and 5 display the time plots of the adjusted close

prices and the log return series for the stock markets. A simulta-
neous decline approximately 2020 is evident across all markets,
attributed to the COVID-19 crisis, as presented in Figure 4. In
Figure 5, the series exhibits volatility clusters during certain pe-
riods and fluctuates within defined ranges, suggesting statistical
stationarity. The volatility clusters are notably pronounced ap-
proximately 2020.
Table 1 presents the descriptive statistics and some prelimi-

nary tests. The results indicate that the mean values for the stock
markets are small. Minimal variation between the stock markets
is observed, as evidenced by small standard deviations. For the
normal distribution test, the Jarque–Bera test statistics and their
p values are less than 0.05, confirming the rejection of normality
for the stock markets.
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Figure 4. Time plot of daily adjusted close price series.

Figure 5. Time plot of the log return series.

3.2. DESIGNING THE MULTIVARIATE CONVOLUTIONAL
NEURAL NETWORKS MODEL

Given their capacity to capture intricate nonlinear relationships
within data. Artificial neural networks (ANNs) are effective in

forecasting. Several factors affect the performance of a neural
network model, such as its architecture and parameters, the pre-
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Table 1. Summary of descriptive statistics of the return series.
Stock Market No. of obs Min Max Mean Std Skewness Kurtosis JB Statistic p-value
JSE.JO 3396 -0.09569 0.07001 0.000386 0.014853 -0.1455 5.730 1066.595 <0.05
BSESN 3396 -0.13153 0.06980 0.000419 0.010310 -0.8641 15.853 23799.128 <0.05
FTSE-100 3396 -0.10874 0.09053 0.000140 0.010017 -0.4928 12.265 12283.849 <0.05
S&P 500 3396 -0.11984 0.09383 0.000420 0.010943 -0.5043 16.168 24678.412 <0.05
KLSE 3396 -0.05261 0.06851 0.000067 0.006330 -0.0544 12.030 11539.456 <0.05

processing and feature engineering methods used, and the quan-
tity and quality of the input data, among others. Other important
factors that improve the predictive performance of ANNs are the
training algorithm and the optimization procedure. Various types
of artificial neural network (ANN) architectures have been pro-
posed, leading to different kinds of ANNs, such as deep neu-
ral networks (DNNs), recurrent neural networks (RNNs), long
short-term memory networks (LSTMs), and convolutional neu-
ral networks (CNNs).
CNNs consist of two main processing layers that handle the

primary computations [11]. The convolutional layers are tasked
with identifying key features from the input data, whereas the
pooling or subsampling layers summarize these features and ex-
tract the most significant ones within a local region. The output
from the final pooling layer is then passed to one or more dense
layers, where classification or regression tasks are carried out. A
multivariate CNN model that uses the previous ten days of data
as its input is built. Each of the five variables, stock market re-
turns, is used as a separate channel in a CNN. Two convolutional
layers with 16 and 32 filter maps and a kernel size of 3 are de-
ployed in this model. A max pooling layer follows each of the
convolutional layers. The output of the max pooling layer is re-
shaped into a flat one-dimensional vector, and then the flattened
vector is allowed to pass into an output layer. Finally, the out-
put layer predicts the stock market return values for the next five
days. The model is trained via 100 epochs and a batch size of
32 using a rectified linear unit (ReLU) as the activation function
in the convolutional and max pooling layers: and ADAM as the
optimizer.

3.3. MODELING HYBRID MODELS OF THE DCC-EGARCH AND
MCNN

Volatility in asset markets, such as the stock market, signifies the
degree of fluctuation in asset prices, serving as a critical indica-
tor of market uncertainty or risk [2]. Investment firms and private
investors leverage volatility [43], to gauge risk through the vari-
ability of underlying asset prices. Understanding the volatility
and interrelations of stock markets is vital from a practical per-
spective and remains a focal point of research, notwithstanding
the predominant emphasis on modeling stock market volatility.
Consequently, extensive studies have been undertaken to model
time-varying volatility and correlations among stock markets via
statistical and econometric models.
Given the intricate, nonlinear, dynamic, and chaotic nature of

stock market data, pinpointing an optimal method for out-of-
sample forecasting poses a significant challenge. Researchers
often resort to integrating neural networks, which are devoid of
prior assumptions, with statistical and econometric models that

Table 2. ARCH effect test (volatility test)
Test Langrange Multiplier Ljunk-Box Rank-based Robust (5%)
Test Statistic 5332.461 11299.34 1891.802 2000.2
p-value <0.05 <0.05 <0.05 <0.05

Table 3. Information criteria for selecting a DCC model
Criteria DCC(1,1) DCC(1,2) DCC(2,1) DCC(2,2)
AIC -34.35095 -34.35028 -34.3479 -34.34959
BIC -34.26619 -34.26346 -34.26107 -34.2607

require assumptions such as homoscedasticity or heteroscedas-
ticity in the variance of the error term. These hybrid models ful-
fill various objectives, including methodological enhancement,
the integration of diverse modeling strategies, and the extraction
of multifaceted information.
Model integration is crucial for augmenting predictive accu-

racy and assessing the risk and comovement of stock prices. Con-
sequently, model combination approaches [42] are explored to
ascertain the most effective integration methodology.

3.4. DCC-EGARCH MODEL
The initial findings indicate significant volatility in stock mar-
ket returns and suggest the applicability of the dynamic condi-
tional correlation (DCC) model for data analysis. Consequently,
the DCC-EGARCH model is implemented following a condi-
tional heteroscedasticity test, which confirms the presence of the
ARCH effect, as detailed in Table 2. Data spanning from January
1, 2010, to January 18, 2021, are utilized for model construction,
whereas out-of-sample data from January 19, 2021, to Decem-
ber 30, 2022, are employed for forecasting. The parameters of
the model are estimated via the maximum log-likelihood estima-
tion method.
Different orders of DCC-EGARCH models were constructed,

and DCC-EGARCH(1,1) emerged as the optimal model on the
basis of Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC), as detailed in Table 3. The parameter
estimates, displayed in Table 4, demonstrate the significance of
the joint ARCH (α) and GARCH (β) parameters, leading to the
rejection of the null hypothesis that these parameters are zero.
Additionally, the sum of the joint ARCH (α) and GARCH (β)
coefficients is less than one (0.0061 + 0.9663 = 0.9724 < 1),
validating the DCC model. This result indicates that the corre-
lations between stock market returns are dynamic, refuting the
hypothesis of constant conditional correlations.
The highest sum of the ARCH and GARCH coefficients is ob-

served for JSE. JO is 0.973, followed by KLSE- 100 (0.918),
BSESN (0.850), FTSE-100 (0.815), and S&P 500 (0.771). These
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Table 5. Estimated and actual unconditional correlation coefficients.
DCC model DCC-MCNN model

Estimated correlation
JSE.JO BSESN FTSE-100 S&P 500 KLSE-100 JSE.JO BSESN FTSE-100 S&P 500 KLSE-100

JSE.JO 0.948 0.158 0.182 0.124 0.158 0.945 0.932 0.931 0.929 0.933
BSESN 0.997 0.370 0.262 0.297 0.957 0.943 0.940 0.946
FTSE-100 0.995 0.558 0.236 0.954 0.938 0.942
S&P 500 0.995 0.137 0.950 0.943
KLSE-100 1 0.959
Actual correlation (Pearson)

JSE.JO BSESN FTSE-100 S&P 500 KLSE-100 JSE.JO BSESN FTSE-100 S&P 500 KLSE-100
JSE.JO 1 0.182 0.225 0.147 0.162 1 0.984 0.984 0.984 0.984
BSESN 1 0.456 0.305 0.376 1 0.989 0.989 0.991
FTSE-100 1 0.584 0.281 1 0.989 0.989
S&P 500 1 0.132 1 0.991
KLSE-100 1 1

Table 6. Information criteria for selecting a DCC-MCNN model.
Criteria DCC-MCNN(1,1) DCC-MCNN(1,2) DCC-MCNN(2,1) DCC-MCNN(2,2)
AIC -47.92953 -47.93127 -47.92868 -47.93042
BIC -47.82959 -47.8289 -47.82631 -47.82561

sums reflect the persistence in conditional variances with JSE.
JO has the greatest persistence, and the S&P 500 has the least
persistence. Notably, all the ARCH coefficients, which mea-
sure the own-volatility spillover effect, are negative: -0.1951 for
S&P 500, -0.1563 for FTSE-100, -0.1235 for BSESN, -0.0661
for KLSE-100, and -0.0140 for JSE.JO. The GARCH coeffi-
cients, indicating persistence, are positive and ranked as follows:
JSE. JO (0.987), KLSE-100 (0.984), BSESN (0.974), FTSE-100
(0.972), and S&P 500 (0.966).
Table 5 compares the estimated and actual unconditional cor-

relation coefficients. Within the DCC model, the highest esti-
mated correlation is between FTSE-100 and S&P 500 (0.559),
closely matching the actual (Pearson) correlation of 0.584. The
lowest estimated correlation is 0.124 between JSE.JO and S&P
500, while the lowest actual correlation is 0.132 between S&P
500 and KLSE-100. For the JSE.JO stock market, the highest
correlation is with FTSE-100, and the lowest is with S&P 500,
consistent in both estimated and actual correlations.
The DCC-MCNN model demonstrates high unconditional

correlations among stock market pairs in both estimated and ac-
tual (Pearson) correlations, attributed to CNN’s efficacy in fea-
ture extraction across variables.

3.5. HYBRID MODEL
Table 6 presents the information criteria for various orders of the
hybrid DCC-MCNNmodels that were constructed. Based on the
Bayesian Information Criterion (BIC), the DCC-MCNN model
of order (1,1) was chosen as the most suitable model due to its
simplicity.
The hybrid DCC-MCNN(1,1) model integrates CNN outputs

as inputs for the DCC model, enhancing its ability to capture
complex dependencies and correlations in the data. Parame-
ters are estimated via the maximum log-likelihood estimation
method, with estimates detailed in Table 4. Like those of the
DCC-EGARCH model, the ARCH (α) and GARCH (β) coeffi-

cients are significant, and their sum is less than one (0.0433 +
0.9321 = 0.9754 < 1). The persistence measurements for condi-
tional variances are 0.855 for JSE.JO, 0.853 for FTSE-100, 0.843
for S&P 500, 0.833 for BSESN, and 0.833 for KLSE-100. The
spillover effect coefficients are negative and significant: -0.063
for JSE.JO, -0.0731 for BSESN, -0.0593 for FTSE-100, -0.069
for S&P 500, and -0.0737 for KLSE-100. The persistence coef-
ficients are 0.918 for JSE.JO, 0.906 for BSESN, 0.912 for FTSE-
100, 0.912 for S&P 500, and 0.906 for KLSE-100.
The performance of the models under consideration is com-

pared based on metrics such as RMSE, MAE, and RMAE. The
metrics are employed to evaluate and contrast the performance
of the models within both in-sample and out-of-sample contexts.
The discrepancy where in-sample errors are lower than out-of-
sample (forecast) errors indicates the effective performance of
the models trained on stock market return data. Table 7 outlines
the in-sample and out-of-sample accuracies of the four models.
Compared with the single models, the hybrid models generally
exhibited the lowest values for both in-sample and out-of-sample
accuracy metrics, such as the RMSE and MAE, with the hybrid
DCC-MCNN model showing superior performance over the hy-
brid MCNN-DCC model. With respect to the RMAE, the hy-
bridMCNN-DCCmodel demonstrated the lowest values for both
in-sample and out-of-sample accuracy, followed by the single
MCNN model, the hybrid DCC-MCNN model, and finally the
DCC models.

4. DISCUSSION
Analyzing model performance via in-sample and out-of-sample
metrics provides valuable insights into their effectiveness in pre-
dicting stock market returns. The lower in-sample errors com-
pared with out-of-sample forecasts suggest that while the mod-
els fit historical data well, their ability to generalize to new data
varies.
The hybrid model, which integrates convolutional neural net-

work outputs into a dynamic conditional correlation model,
consistently demonstrates stronger performance across both in-
sample and out-of-sample accuracy measures such as RMSE
and MAE. Specifically, the hybrid DCC-MCNN model emerges
as the top performer among the evaluated models, surpassing
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Table 7. In-sample and out-of-sample accuracy of the analysis.

Country
DCC model MCNN model MCNN-DCC model DCC-MCNN model
In-sample Out-of-sample In-sample Out-of-sample In-sample Out-of-sample In-sample Out-of-sample

Root mean square error (RMSE)
JSE.JO 0.22285 0.22574 0.01199 0.02179 0.00708 0.01714 0.00402 0.00755
BSESN 0.15509 0.15010 0.00944 0.02230 0.00581 0.01516 0.00518 0.00518
FTSE-100 0.15304 0.13582 0.01005 0.02367 0.01153 0.02682 0.00494 0.00500
S&P 500 0.16246 0.18400 0.00805 0.01942 0.00493 0.01558 0.00542 0.00467
KLSE-100 0.09284 0.10124 0.00726 0.01978 0.00404 0.02027 0.00300 0.00669
Mean absolute error (MAE)
JSE.JO 0.21059 0.21732 0.00751 0.01289 0.00610 0.01269 0.00315 0.00647
BSESN 0.13632 0.14060 0.00606 0.01384 0.00435 0.01161 0.00404 0.00415
FTSE-100 0.13414 0.12651 0.00638 0.01463 0.00980 0.02112 0.00388 0.00396
S&P 500 0.13150 0.16979 0.00474 0.01210 0.00371 0.01246 0.00424 0.00341
KLSE-100 0.08161 0.09786 0.00453 0.01145 0.00314 0.01430 0.00236 0.00554
Relative mean absolute error (RMAE)
JSE.JO 93.2952 95.7719 1.2953 2.2180 0.9540 2.0028 31.0641 65.1487
BSESN 93.6042 93.6124 1.0460 2.3813 0.6801 1.8313 32.0115 34.8822
FTSE-100 93.6197 92.9506 1.1006 2.5178 1.5326 3.3331 31.8479 33.6640
S&P 500 93.5063 94.6517 0.8171 2.0822 0.5805 1.9659 32.2774 27.2341
KLSE-100 93.4685 91.0712 0.7823 1.9699 0.4910 2.2556 32.1146 79.0470

both the single model approaches and the hybrid MCNN-DCC
model. This superiority highlights the benefits of leveraging the
advanced feature extraction capabilities of CNNs to enhance the
predictive accuracy of financial models. This result is in line
with Refs. [2, 32, 41, 44, 45] in terms of the hybrid models sur-
passing the single models and hence enhancing the forecasting
of statistical models. Furthermore, the hybrid DCC-CNN model
outperforms the hybrid CNN-DCC model in integrating with the
DCC model. This is because the DCC-CNN model preserves
the DCC model’s characteristics of dynamic volatility and cor-
relation, while the CNN-DCC model does not. This finding is
consistent with Ref. [42].

From an economic perspective, the superior performance of
the DCC-CNN hybrid model can be attributed to its ability to
capture complex nonlinear relationships and temporal dependen-
cies inherent in financial markets. Volatility and return correla-
tions across international markets are often driven by macroe-
conomic news, investor sentiment, and inter-market spillover ef-
fects, which may exhibit non-obvious patterns. By preserving
the DCC model’s structure, the hybrid framework retains cru-
cial information about time-varying volatilities and cross-asset
co-movements. Meanwhile, the CNN component contributes by
detecting localized patterns or abrupt structural changes in the
data, features that traditional econometric models may overlook.
This synergy enables more economically meaningful forecasts,
particularly under volatile or regime-switching conditions where
adaptability and precision are critical.

These results emphasize the effectiveness of incorporating
convolutional neural network outputs in enhancing the predic-
tive capabilities of dynamic conditional correlation models for
financial forecasting.

5. CONCLUSION
Overall, the models evaluated demonstrate varying levels of per-
formance when applied to stock market return data. The compar-

ison of in-sample and out-of-samplemetrics reveals that while in-
sample errors tend to be lower, indicating a good fit, forecasting
accuracy is generally lower. The hybrid models consistently ex-
hibit superior performance in terms of both in-sample and out-of-
sample accuracy metrics such as RMSE and MAE, with the hy-
brid DCC-MCNN model showing particular strength compared
to the hybrid MCNN-DCC and single model approaches.

For investors and financial analysts, these results highlight the
practical value of adopting hybrid models like DCC-MCNN to
enhance portfolio allocation, risk assessment, and trading strate-
gies. The model’s ability to capture nonlinear dependencies and
dynamic correlations can lead to more robust volatility forecasts,
improving hedging effectiveness and asset pricing accuracy. An-
alysts should prioritize integrating machine learning techniques
with traditional econometric models, as this synergy offers a
competitive edge in anticipating market shifts while mitigating
overfitting risks inherent in purely data-driven approaches.

The findings underscore the importance of considering model
complexity and the integration of innovative techniques like
CNNs in financial forecasting. By effectively capturing complex
relationships and patterns in stock market data, hybrid models
like DCC-MCNN can potentially improve decision-making pro-
cesses in investment strategies and risk management. Future re-
search could focus on refining these hybrid models further and
exploring their applicability across different financial markets
and economic conditions, such as crises, by taking into account
the pre-crises, crises, and post-crises periods.
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