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A B S T R A C T

This study seeks to simulate the amplification of the optical fiber power by the gener-
ation of higher order solitons. This was achieved by solving an extended form of the
nonlinear Schrödinger equation (NLSE) using the split step Fourier method (SSFM)
with Gaussian functionals having multiple peaks as initial conditions to simulate the
generation of higher order solitons in the optical fiber. Some key fiber parameters such
as the coefficients of loss α, group velocity dispersion β and nonlinearity γ were varied
and the respective effects on the optical fiber and soliton power were then observed using
spatial plots, 3-D contour plots and image color maps. Results obtained showed that in
all soliton orders, higher order solitons were created when β was increased from 0.05
to 0.1 fs/nm.km. This shows a broadening of the soliton to create higher order solitons
when dispersion is managed within that range which results in a boost in the peak soliton
power amplified from 4.5309 W to 14.9508 W and then to 15.0828W as the soliton
order was increased from 1st – 2nd – 3rd order respectively using Gaussian functionals.
The extra power gained is as a result of the fact that a newly created soliton takes its
energy from the radiation present in the dispersed soliton even though the optical power
attenuates. It was also observed that, increasing the coefficients α, β and γ from 0.1 – 1.0
results in a continuous attenuation of the optical fiber power leading to the propagation
of radiation (noisy signal) in the optical fiber which scatters and exponentially decays
after a short distance along the length of the optical fiber.
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1. INTRODUCTION
An Optical fiber is a thin and flexible strand of glass or plastic
material that transmits information in the form of light pulses. It
comprises of three components: the central part called the core,
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the outer coating material with a lower index of refraction called
the cladding and the external protective layer. Light which prop-
agates through the optical fiber is transmitted through the core by
the process of total internal reflection which depicts the fiber as a
wave guide. Optical fibers are of two types: multi-mode and sin-
gle mode fibers. Multi-mode fibers support multiple propagation
paths or transverse modes while single mode fibers support just
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a single propagation path [1]. Optical fibers are generally better
for signal transmission than electric wire cables because light in
fibers suffers extremely low power loss and attenuation (about
0.2 dB/km) and fibers does not create external electromagnetic
fields thus providing an extremely wide bandwidth [2]. With the
ever-growing data traffic which requires more data-carrying ca-
pacity and band width heralded by the introduction of more com-
plex and higher capacity networks such as 3G, 4G, and 5G tech-
nology, optical fibers are the best medium to curtail themultiplic-
ity of dispersion effects in signal propagation [3]. Optical fiber
also has the capacity to transmit data at extremely high speeds
(greater than 40 Terabits per second) and thus improves the effi-
ciency of 5G network, sparking a revolution in the digital world
[4]. The collaboration between 5G networks and optical fiber has
emerged as a crucial catalyst for advancement in communication
technology due to the fact that optical fiber facilitates the avail-
ability of higher bandwidth for transmission of large amounts of
data, reduces latency (network response time), is more energy
efficient as it minimizes losses via heating and electromagnetic
interference and offers unprecedented scalability while provid-
ing higher level of data security i.e. immunity from electronic
eavesdropping and data interception [4, 5]. Optical fiber tech-
nology is also cost effective on the long run because after initial
cost of installation, there is lower maintenance cost and reduced
need for frequent repairs and replacement of worn out compo-
nents as it is not affected by atmospheric attenuation enabling
long distance communication [5].
Another advantage of optical fibers over electrical cables is in

the mode of propagation; for instance, the response of glass to
a light pulse is nonlinear, whereas that of copper to an electric
current is linear. This nonlinearity observed in optical fibers has
been harnessed via the adoption of the soliton concept [6]. Soli-
tons in optical fibers are pulses of light that stabilize a balance
between linear and nonlinear distortions [7]. These light pulses
in optical fibers transmit the bulk of all telecommunication sig-
nals in recent times. They are localized nonlinear waves which
maintain a constant shape and speed throughout its propagation
despite the effects of external perturbations. Order wise, soli-
tons can be categorized into two: fundamental and higher order
solitons. Fundamental solitons are solitons of order 1; they are
the simplest and most stable. Higher order solitons are solitons
of order greater than 1. They are composed of overtones of the
fundamental soliton, are less stable and exhibit complex behav-
ior. The energy of higher order solitons is higher than that of the
fundamental soliton by a factor which is the square of an integer
i.e. 1, 4, 9, .... They are utilized for nonlinear pulse compres-
sion and degenerate back to the fundamental soliton under ef-
fects such as: Raman scattering and higher order dispersion [8].
This instability arises as a result of their periodic shape varia-
tions making them vulnerable to perturbations that can disrupt
the equilibrium maintained by the nonlinear effects and pulse
broadening [9]. Thus in this work, simulations will be under-
taken using functionals in the solution of the extended Nonlinear
Schrödinger Equation (NLSE) in order to boost the soliton con-
tent of an optical fiber and thus amplify the soliton power of the
optical fiber and minimize signal loss and dispersion.

2. METHODOLOGY

2.1. THE EXTENDED NONLINEAR SCHRÖDINGER EQUATION
he nonlinear Schrödinger equation (NLSE) is usually applied to
obtain the complex amplitude U (z, t) of the soliton propagating
through an optical fiber. Its basic form is given as Ref. [7]:
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u + γ|A|2u = 0, (1)

where u(z, t) is the complex amplitude of the soliton, α is the
loss coefficient in dB/km, β2 is the coefficient of group velocity
dispersion in fs/(nm.km) and γ is the nonlinearity coefficient in
m2/W . However, the basic form of theNLSE neglects linear loss,
higher order dispersion parameters and ignores other effects such
as Raman scattering (TR). Hence there is the need to apply the
extended NLSE in order to capture more effects. The general
form of the extended NLSE is given by Ref. [10]:
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where, β4
24
∂4

∂t4
u is the higher order dispersion term. Raman scat-

tering stems from the inelastic scattering of light as it interacts
with the fiber’s molecules transferring energy between them and
causing a shift in the wavelength of the scattered light. Raman
scattering effect also boosts the power on the long run [10] and
so in this work the effect of Raman scattering is neglected in or-
der to reduce the complexity of the system and thus the extended
NLSE can be re-written as:
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Dividing through by the complex variable −i and setting the
higher order dispersion coefficient β4 = 1 because its effect
(pulse broadening) is negligible compared to that of the group
velocity dispersion β2 [11], the extended NLSE is reduced to:
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2.2. SPLIT-STEP FOURIER METHOD
In this work nonlinear partial differential equation was solved
by applying the Split-Step Fourier Method (SSFM). First of all,
the linear (L) and nonlinear (N) parts of the extended NLSE in
Equation (4) are identified as follows:

L = −iβ2
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+ i
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−
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2
u and N = iγ|u|2u. (5)

Then proceed to purely solve the equation for the nonlinear part
N, neglecting the linear term, L:

∂u
∂z
= iγ|u|2u. (6)

The resultant ordinary differential equation (ODE) is then solved
at increments ∆t to give the solution:
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Neglecting N in the equation (4) we have:
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Table 1. List of functionals used as initial conditions for the generation of higher order solitons using the extended NLSE.
Soliton Order Description of Soliton Functionals Remark
1 First order uo = (sechx )2 or uo = e−x

2
Fundamental Soliton

2 Second order uo = e−(x+3)2
+ e−(x−3)2

Higherordersolitons
3 Third order uo = e−(x+5)2

+ e−x
2
+ e−(x−5)2

4 Fourth order uo = e−(x+6)2
+ e−(x+2)2

+ e−(x−2)2
+ e−(x+6)2

5 Fifth order uo = e−(x+8)2
+ e−(x+4)2

+ e−x
2
+ e−(x−4)2

+ e−(x+8)2

Figure 1. Variation of the amplitude ( |U |2)of the first order soliton with space coordinate z, for a range of values of α, β & γ.

Figure 2. Contour plot of the amplitude ( |U |2)of the first order soliton with time(t) and space (z) for a range of values of α, β & γ.

Solving the resultant ODE in the interval [t , t + ∆t] and use u (x, t + ∆t) in equation (5) as initial condition. An analytical
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Figure 3. Image color maps of the first order soliton for a range of values of α, β & γ.

Figure 4. Variation of the optical fiber power of the first order soliton with space coordinate z, for a range of values of α, β & γ.

solution of equation (8) was then obtained by taking the Fourier
transform:

F
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The solution of the z domain can be obtained by taking the in-

verse Fourier transform in the z domain is given as:
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Substituting equation (12) into (11), the overall solution can be
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Figure 5. Variation of the amplitude ( |U |2)of the second order soliton with space (z) for a range of values of α, β & γ.

Figure 6. Contour plot of the amplitude ( |U |2)of the second order soliton with time(t) and space (z) for a range of values of α, β & γ.

written in a single equation viz:

u (z, τ + ∆t) = F −1
[
exp

(
iβω2∆t + iω4∆t −

α

2

)
.F

(
exp
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)]
. (13)

The peak power of the soliton is computed from the relation
[12]:

Po = max(|u(z, t)|2). (14)

This is the optical fiber power at the origin. The optical power in

a fiber P(z), at a distance z is given by:

P(z) = Poexp(−αz). (15)

The soliton power on the other hand is given by Ref. [10]:

P(t) = Posech2
(
t
To

)
, (16)

where To is the pulse duration. The attenuation coefficient,
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Figure 7. Image color maps of the second order soliton for a range of values of α, β & γ.

Figure 8. Variation of the optical fiber power of the second order soliton with fiber length (L) for a range of values of α, β & γ.

α per km, is given by the relation:

α =
10
z

log
[
Po
P(z)

]
. (17)

Without the effects of nonlinearity γ, the shape of the light pulse
could be greatly distorted after a unit of dispersion length LD

[12]. LD was computed using the expression:

LD =
T 2
o

|β|
(18)

The nonlinearity length LN enables soliton self-phase modula-
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Figure 9. Variation of the amplitude ( |U |2) of the third order soliton with space (z) for a range of values of α, β & γ.

Figure 10. Contour plot of the amplitude ( |U |2) of the third order soliton with time(t) and space (z) for a range of values of α, β & γ.

tion and is expressed as:

LN =
1
γPo
. (19)

Also as a result of this phenomenon of self-phase modulation,
there must exist a balance between β2 and γ, such that: LD =
LN and thus, the complex amplitude, u and pulse duration must
satisfy the condition [12]:

PoTo2 =
|β2|

γ
. (20)

Table 1 shows the exponential and hyperbolic functionals devel-
oped as the initial boundary conditions to facilitate the genera-
tion of higher order solitons for the propagation of solitons in an
optical fiber through the extended NLSE.

In our simulation, the fiber length L = 20 km, pulse duration
To = 100 fs and the number of spatial grid points N = 512. The
V-parameter was set > 2.405 (single mode fiber) [13], while the
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Figure 11. Image color maps of the third order soliton for a range of values of α, β & γ.

Figure 12. Variation of the optical fiber power of the third order soliton with fiber length (L) for a range of values of α, β & γ.

frequency vector ω (spatial frequencies) was set as Ref. [14]:

ω =
2π
L

[
0 :

N
2
− 1,−

N
2

: −1
]
. (21)

The parameters α (dB/km), β(fs/(nm.km) and γ(m2/W ) were
randomly varied from 0.005 to 1.0 and the resultant soliton peak
power in the optical fiber was computed.

3. RESULTS AND DISCUSSION

The results presented in Figures 1-12 show the soliton solutions
of the extended (NLSE) using the functionals in Table 1 for the
first order (i.e. fundamental) and higher order solitons. The re-
sults illustrate the variation of the square of the complex ampli-
tude |u|2 (soliton power) with space coordinate, z and time, t. It
can be observed that the amplitude of the soliton maintains a sin-
gle peak when the loss, dispersion and nonlinearity coefficients
are very low but exhibits multiple peaks when the value of these
coefficients are significantly increased. This is visualized in the
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Figure 13. Variation of soliton peak power, Po with fiber parameters for
the 1st , 2nd and 3rd Order solitons.

image color maps plotted, where the single illuminated orange
line shows the soliton pulse propagation inside the optical fiber.
It is also observed that under a high increase in loss coefficient, a
faded image of the soliton being propagated is displayed through
the optical fiber. The result in Figure 4 also shows that attenua-
tion of the optical power with fiber length with increase in loss
coefficent, α. This trend is also observed when higher order soli-
tons are generated and their key parameters varied.

The fundamental soliton is one which corresponds to order
one (1) and is the most stable solution of the NLSE. It transmits
at peak power and also has a short pulse duration. The funda-
mental soliton in this work was generated from a sech pulse as
shown in Table 1. From the results in Figures 1-4, the behavior
of the fundamental soliton was simulated by varying the three
main parameters: α, β and γ. From the results obtained, it was
observed that when the three parameters are set very low (i.e.
α = β = γ = 0.005), the soliton peak power value of about 1.053
W is obtained. As the parameters are varied up to 0.1, the opti-
cal fiber power peaks at 4.5309 W. This is because an increase
in dispersion up to 0.1 causes a split in the soliton order from
first to second orders which in turn increases the soliton con-
tent and so the constructive interference that occurs boosts the
fundamental soliton optical power. In figure 13 it was observed
that the soliton peak power in the optical fiber rises from 1.053
– 4.5309 W, as the fiber parameters are increased from 0.005 to
0.1, then it begins to drop for values > 0.1 until it approaches
zero at α =β = γ = 0.6. It was also observed that the soliton
peak power attenuates steadily (exponentially decays) with in-
crease in fiber length as all three fiber parameters are steadily
increased. This results in the broadening and fading of the signal
as it propagates along the fiber length as shown in Figure 4(a-d).
This is the worst-case scenario and it leads to the total damping
and scattering of the fundamental soliton in the optical fiber.

Higher order solitons are localized pulses with multiple peaks
that maintain their shapes over shorter distances in nonlinear op-
tical fibers. They exhibit periodic and quasi periodic behaviors
and usually breakdown into fundamental solitons when distorted.
They are overtones or harmonics of the fundamental soliton and
are formed by nonlinear phase shifts in high intensity pulses, dis-
persion management and application of an initial chirp to the
fundamental soliton. In this simulation, higher order solitons
were generated using Gaussian functions with multiple smooth

peaks as initial conditions to the NLSE. Second order solitons
were created by applying a function with two Gaussian peaks
as illustrated in Table 1. The results presented in Figures 5-8
shows the behavior of the second order soliton under the varia-
tion of the fiber parameters α, β and γ. Here too, it was observed
that when the three parameters are set at a very low value (i.e.
α = β = γ = 0.005), the soliton peak power was observed to be
Po = 1.053 W . But as the three fiber parameters are increased
steadily up to 0.1, the optical fiber soliton power gets amplified
and peaks at 14.9508 W. This is because an increase in the value
of β up to 0.1 causing a split in the soliton order from second to
third order which in turn increases the soliton content and thus
the constructive interference that occurs boosts the fundamental
soliton optical power. In Figure 13 it can be seen that the peak
power of the optical fiber rises from 1.053 – 14.9508 W as the
fiber parameters are increased from 0.005 to 0.1, then it begins
to drop for values > 0.1 until it hits zero at α = β = γ = 0.6. Be-
yond the critical value of 0.6, the soliton peak power attenuates
and radiation (noisy signal) is formed, leading to a total decay of
the signal along the fiber length as illustrated in Figure 8 (a-d).
In the results in Figures 5(c & d) to 8(c & d) there is a com-
plete destruction of the soliton order, fading, pulse broadening
and attenuation of the peak power as all three parameters alpha
α, β and γ are increased progressively. It was also observed that,
beyond α = β = γ = 0.1, the soliton order is destroyed resulting in
propagation of radiation in the optical fiber which broadens and
attenuates after a very short distance along the length of the op-
tical fiber [15]. The image color maps in Figure 7(a-d) confirms
this phenomenon.

Furthermore, the third order solitons were generated by using a
Gaussian function with three Gaussians peak as initial conditions
in solving the extended nonlinear Schrödinger equation. The re-
sults in Figures 9-12 illustrate the effect of increasing α, β and γ
simultaneously from 0.005 - 1.0. it was observed that when the
three parameters are very low (i.e. α = β = γ = 0.005), the soli-
ton peak power value computed was found to be 1.053W. As the
parameters were varied up to 0.1, the optical fiber soliton power
got amplified and peaked at 14.9508 W. This is because an in-
crease in dispersion up to 0.1 causes a split in the soliton order
from second to third order which in turn increased the soliton
content in the optical fiber and so the constructive interference
that occurred boosted the fundamental soliton optical power. In
Figure 13 it can be seen that the peak power of the optical fiber
rose from 1.053 – 15.0828W, slightly above the value of 14.9508
W recorded for the second order soliton as the fiber parameters
are increased from 0.005 to 0.1. Beyond this threshold value of
α = β = γ = 0.1, the soliton peak power began to drop until a
total attenuation and broadening along the fiber length occurs at
α = β = γ = 0.6 just like in the first and second order soliton.
At parameter values greater than 0.6, the third order soliton order
degenerates into radiation in the optical fiber which attenuate and
scatters after a short distance along the fiber length. The image
color maps in Figure 11(a-d) illustrates this phenomenon.

In summary, the results of this simulation shows that the soli-
ton peak power was amplified from 4.5309 W to 14.9508W and
then to 15.0828W as the soliton order was increased from 1st

– 2nd – 3rd order respectively using Gaussian functionals. The
extra power gained is as a result of the fact that, a newly created
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soliton takes its energy from the radiation present in the dispersed
soliton which serves as a boost for signal transmission via wave
propagation through the optical fiber [16]. These results can be
applied to amplify transmission lines or in fiber lasers.

4. CONCLUSION
The research has demonstrated the application of the extended
NLSE as a modeling framework in capturing the complexities
of soliton dynamics in optical fibers. The findings reveal that,
by generating higher order solitons using Gaussian functionals,
the optical fiber power could be amplified from 4.5309 W for
the fundamental soliton to 14.9508W in the second order and
15.0828W in third order soliton. The extra power gained is as
a result of the fact that, a newly created soliton takes its energy
from the radiation present in the dispersed soliton which serves
as a boost for signal transmission via wave propagation through
the optical fiber and with the right control of the dispersion and
nonlinearity, the soliton content could be optimized and stabi-
lized. The research adds to the body of knowledge for the design
of more advanced optical networks to meet up the ever growing
bandwidth and high speed data (5G) communication demands.

DATA AVAILABILITY
We do not have any research data outside the submitted
manuscript file.

ACKNOWLEDGMENTS
The authors wish to appreciate staff of the Department of
Physics, Joseph Sarwuan Tarka University Makurdi for their
moral support and the team of reviewers for their contributions
towards setting the paper in the right order.

References
[1] S. Toenger, T. Godin, C. Billet, F. Dias, M. Erkintalo & J. M. Dudley,

‘‘Emergent rogue wave structures and statistics in spontaneous modula-
tion instability", Scientific Reports 5 (2015) 1. https://doi.org/10.1038/
srep10380.

[2] N. Akhmediev, B. A. Anatoly & N. L. Nikolay, ‘‘Recent progress of study
on optical solitons in fiber lasers and integrable turbulence and roguewaves,
breathers or soliton", Phys. Rev. Lett. 116 (2016) 103901. https://doi.org/
10.063/1.5091811.

[3] I. S. Amiri, G. Palai, A. I. Jafar & S. K. Zubi, ‘‘Controlling of optical
fiber bending losses through ‘‘WARN’’ parameter and machine learning
direction at three communications windows", Optik 194 (2019) 163054.
https://doi.org/10.1016/j.ijleo2019.163054.

[4] J. A. Guzman-Yermanos, ‘‘Optical fiber and 5G networks: Al-
lies in the quest for better connectivity", Internexa Blog. Ac-
cessed 12/04/2025 at 4:00 GMT. https://blog.internexa.com/en/
benefits-of-optical-fiber-in-5g-networks.

[5] H. H. Lu, X. H. Huang, C. Y. Li, Y. Z. Xu, J. L. Li, W. X. Chen, C. H.
Liu & T. M. Wu, ‘‘Two-way free-space optics-based interface between
fiber and 5G communication employing polarization-orthogonal modula-
tion", Communications Engineering 2 (2023) 89. https://doi.org/10.1038/
s44172-023-00148-2.

[6] G. P. Agrawal, ‘‘Fiber Optics Communication Systems and Nonlinear Fiber
Optics", Academic, San Diego, Calif., 59 (2012) 880–883. https://doi.org/
10.1002/9780470918524.

[7] C. Mahnke, A. Hause & F. Mitschke, ‘‘Analysis on the Generation of Soli-
tons in Amplifying Optical Fibers", International Journal of Optics 4 (2018)
11. https://doi.org/10.1155/2018/9452540.

[8] Y. Han, B. Gao, H. Wen, C. Ma, J. Huo, Y. Li, L. Zhou, Q. Li, G. Wu
& L. Liu, ‘‘Pure-high-even-order dispersion bound solitons complexes in
ultra-fast fiber lasers", Light: Science & Applications 13 (2024) 101. https:
//doi.org/10.1038/s41377-024-01451-z.

[9] R. Paschotta, ‘‘Higher-Order Solitons", RP Photonics Encyclopedia. Ac-
cessed on 28/01/2025 at 12:00 GMT. http://doi.org/10.61835/Qmq.

[10] D. Felice, L. Barletti & A. Candolfi, ‘‘A Study of a Nonlinear Schrödinger
Equation for Optical Fibers", Università degli Studi di Firenze, Facoltà di
Scienze Matematiche, (2016).

[11] M. N. Vinoj, Studies on some nonlinear Schrödinger type of equation de-
scribing pulse propagation through optical fiber, M.Sc. Thesis, Department
of Physics, Cochin University of Science and Technology, Kochi (2003).
https://dyuthi.cusat.ac.in/jspui/bitstream/purl/3390/1/dyuthi-T1367.pdf.

[12] F. Mitschke, C. Mahnke & A. Hause, ‘‘Soliton Content of Optical
Fiber Pulses", Applied Sciences 7 (2017) 635. https://doi.org/10.3390/
app7060635.

[13] A. W. Snyder & J. D. Love, Optical Waveguide Theory, Chap-
man and Hall, London, England, 1983, pp. 13–18. https:
//www.taylorfrancis.com/chapters/edit/10.1201/NOE0750309608-9/
optical-waveguide-theory-stewart.

[14] P. Suarez, ‘‘An Introduction to the Split Step Fourier Method inMATLAB",
(2015). https://doi.org/10.13140/RG.2.1.1394.0965.

[15] P. Suret, M. Dufour, G. Roberti, G. El, F. Copie & S. Randoux, ‘‘Soliton
Refraction by an Optical Soliton Gas", Physical Review Research 5 (2023)
L042002. https://doi.org/10.48550/arXiv2303.13421.

[16] C. Mahnke, A. Hause & F. Mitschke, ‘‘On the Generation of Solitons
in Amplifying Optical Fibers", International Journal of Optics (2018) 11.
https://doi.org/10.1155/2018/9452540.

https://doi.org/10.1038/srep10380
https://doi.org/10.1038/srep10380
https://doi.org/10.063/1.5091811
https://doi.org/10.063/1.5091811
https://doi.org/10.1016/j.ijleo2019.163054
https://blog.internexa.com/en/benefits-of-optical-fiber-in-5g-networks
https://blog.internexa.com/en/benefits-of-optical-fiber-in-5g-networks
https://doi.org/10.1038/s44172-023-00148-2
https://doi.org/10.1038/s44172-023-00148-2
https://doi.org/10.1002/9780470918524
https://doi.org/10.1002/9780470918524
https://doi.org/10.1155/2018/9452540
https://doi.org/10.1038/s41377-024-01451-z
https://doi.org/10.1038/s41377-024-01451-z
http://doi.org/10.61835/Qmq
https://dyuthi.cusat.ac.in/jspui/bitstream/purl/3390/1/dyuthi-T1367.pdf
https://doi.org/10.3390/app7060635
https://doi.org/10.3390/app7060635
https://www.taylorfrancis.com/chapters/edit/10.1201/NOE0750309608-9/optical-waveguide-theory-stewart
https://www.taylorfrancis.com/chapters/edit/10.1201/NOE0750309608-9/optical-waveguide-theory-stewart
https://www.taylorfrancis.com/chapters/edit/10.1201/NOE0750309608-9/optical-waveguide-theory-stewart
https://doi.org/10.13140/RG.2.1.1394.0965
https://doi.org/10.48550/arXiv2303.13421
https://doi.org/10.1155/2018/9452540

