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A B S T R A C T

This paper introduces a single-step optimized fourth-derivative block hybrid method
specifically designed to solve general third-order initial value problems directly. By
incorporating advanced optimization techniques, the method significantly improves
accuracy and computational efficiency. Extensive analysis confirms that the method
exhibits zero-stability, consistency, A-stability, and convergence properties. Numerical
experiments conducted in this study reveal that the proposed method surpasses existing
approaches in accuracy, establishing it as a significant advancement in the numerical
solution of higher-order initial value problems.
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1. INTRODUCTION
Third-order initial value problems (IVPs) frequently arise in var-
ious scientific and engineering applications, including the mod-
eling of electromagnetic waves and thin-filmflows. Despite their
prevalence, such problems often lack closed-form analytical so-
lutions, necessitating the use of numerical approximations. Tra-
ditional methods for solving third-order IVPs often involve trans-
forming them into equivalent systems of first-order ordinary dif-
ferential equations (ODEs). Although this approach is effective,
it significantly increases the system’s dimensionality, resulting
in higher computational costs and added complexity. To address
these challenges, recent studies have prioritized the development
of direct numerical techniques for solving third-order IVPs (1),
bypassing the need for such transformations.
Several notable contributions have advanced this field. Mo-
hammed and Adeniyi [1] developed a three-step hybrid linear
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multistep method for solving third-order IVPs. Similarly, Lawal
et al. [2] introduced a four-step hybrid block technique for spe-
cial third-order IVPs, achieving an order of p = 9 by incorporat-
ing four off-step points. Allogmany and Ismail [3] extended the
research by deriving a multi-derivative linear multistep method
with practical applications for third-order IVPs.

Recent advancements include an implicit one-step hybrid back-
ward differentiation formula by Adamu et al. [4], which incor-
porates four equally spaced off-grid points to directly solve third-
order ODEs. Alkasassbeh et al. [5] proposed a single-step hy-
brid block technique incorporating two off-grid points applied
to the first and second derivative functions for third-order IVPs.
Duromola et al. [6] derived a one-step block hybrid method
with three equally spaced off-step points for solving third-order
IVPs. Adeyefa et al. [7] introduced an order-six one-step hybrid
block method with a single off-step point for solving third-order
ODEs. Kuboye et al. [8] developed a four-step family of two
hybrid block methods, each incorporating a single off-step point
per block, for solving third-order ODEs. Additionally, Rufai et
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al. [9] proposed two-step optimized hybrid technique employing
two off-grid points for addressing general third-order ODEs.
Most methods in the literature lack both high-order accuracy and
stability. These limitations have driven ongoing efforts to im-
prove the accuracy and efficiency of numerical techniques for
directly solving higher-order IVPs. Building on this progress,
the present study aims to develop a single-step optimized hy-
brid block method that leverages three carefully selected off-step
points to enhance both stability and accuracy in solving general
third-order IVPs, as defined in eq. (1).
The primary objective is to overcome the shortcomings of exist-
ing approaches and provide a more efficient and reliable solution
for directly addressing third-order IVPs. The robustness of the
proposedmethod is demonstrated through a comprehensive anal-
ysis of key properties, including convergence. Additionally, nu-
merical experiments are conducted to evaluate its performance,
highlighting its superior accuracy and effectiveness compared to
existing methods.
This paper is organized as follows: Section 2 presents the deriva-
tion process of the proposed method. Section 3 comprehensively
analyzes the method’s properties, covering zero-stability, con-
sistency, and convergence. Section 4 presents the numerical re-
sults obtained from applying the method and provides a detailed
discussion of these results. Finally, Section 5 summarizes the
conclusions drawn from the study, highlighting the contributions
and implications of the developed method in solving third-order
IVPs.

2. DERIVATION OF THE METHOD
This study focuses on developing a numerical method to solve
general third-order IVPs, expressed as

z′′′(t) = f (t , z, z′, z′′), z(t0) = z0,

z′(t0) = z1, z′′(t0) = z2, t ∈ [a, b], (1)

where f : R × R3m → Rm is a continuous function that satisfies
the Lipschitz condition.

Lemma 1 (Lipschitz condition). Suppose the third-order ODE
is given as eq. (1). The function f (t , z, z′, z′′) satisfies a Lipschitz
condition with respect to z, z′, and z′′ if there exists a constant
K > 0 such that, for all points (t , z1, l1, ω1) and (t , z2, l2, ω2) in a
domain D ⊂ R4, the following inequality holds:

| f (t , z1, l1, ω1) − f (t , z2, l2, ω2) | ≤
K(|z1 − z2| + |l1 − l2| + |ω1 − ω2|). (2)

Here:

� z1, z2 are distinct values for z,

� l1, l2 are distinct values for z′, and

� ω1, ω2 are distinct values for z′′.

Theorem 1 (Existence and uniqueness of solution). Suppose the
third-order ODE is given as eq. (1). If:

1. f (t , z, z′, z′′) is continuous in t , z, z′, z′′ in some region D ⊂
R4 containing (t0, z0, z1, z2), and

2. f (t , z, z′, z′′) satisfies the Lipschitz condition in z, z′, z′′, as
defined in eq. (2),

then there exists a unique solution z(t) to the ODE in some in-
terval [t0 − δ, t0 + δ], where δ > 0 depends on f and the initial
conditions.

Proof
Step 1: Reduction to a first-order system.
To reduce the third-order ODE to a system of first-order ODEs,
we introduce new variables:

l1 = z, l2 = z′, l3 = z′′. (3)

Then:

l′1 = l2, l′2 = l3, l′3 = f (t , l1, l2, l3). (4)

This system can be written in vector form as

L′ = F(t ,L), (5)

where:

L =
[
l1, l2, l3

]
, F(t ,L) =

[
l2, l3, f (t , l1, l2, l3)

]
.

Step 2: Application of the Picard-Lindelöf theorem [10].
The Picard-Lindelöf theorem ensures the existence and unique-
ness of solutions to the system

L′ = F(t ,L), (6)

provided that:

1. F(t ,L) is continuous in t and L, and
2. F(t ,L) satisfies the Lipschitz condition in L.

By assumption, f (t , z, z′, z′′) satisfies these conditions, which im-
plies F(t ,L) does as well.
Step 3: Solution to the original ODE.
The solution to the system is

L(t) =
[
l1(t), l2(t), l3(t)

]
, (7)

which exists and is unique on some interval [t0 − δ, t0 + δ]. The
first component, L(t), l1(t) = z(t), is the unique solution to the
original third-order ODE.
To derive the implicit single-step optimized fourth-derivative hy-
brid block method, we introduce an approximating polynomial
p(t), expressed as

z(t) ≈ p(t) =
9∑
j=0

ajt j, (8)

where aj ∈ R are unknown coefficients to be determined by ap-
plying interpolation and collocation conditions at carefully se-
lected points. The expressions for the third and fourth derivatives
of p(t) are given by

z′′′(t) =
9∑
j=3

j(j − 1)(j − 2)ajt j−3, (9)
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z′′′′(t) =
9∑
j=4

j(j − 1)(j − 2)(j − 3)ajt j−4. (10)

These expressions form the foundation for deriving the hybrid
method by applying interpolation and collocation conditions.
Specifically, the following conditions are imposed. eq. (8) is
interpolated at t = tn+i, i = 0, 1

2 , 1, while eq. (9) is collocated at
t = tn+i, i = 0, r , 1

2 , 1 − r , 1. Additionally, eq. (10) is collocated
at t = tn+i, i = 0, 1. Here 0 < pi < 1, with pi chosen as r , 1

2 , 1 − r .
These conditions yield a system of ten equations corresponding
to the interpolation and collocation constraints. Solving this sys-
tem provides the ten unknown coefficients aj of the polynomial
p(t). The imposed conditions can be summarized as follows:

p(tn+i) = z(tn+i), i = 0,
1
2
, 1,

p′′′(tn+i) = f (tn+i), i = 0, r ,
1
2
, 1 − r , 1,

p′′′′(tn+i) = g(tn+i), i = 0, 1.

Substituting the obtained coefficients into eq. (8) and simplifying
yields the general method equation

z(t) =
∑

j=0, 12 ,1

µj(t)zn+j + h3
∑

j=0,r , 12 ,1−r ,1

ζj(t)fn+j

+ h4
∑
j=0,1

ξj(t)gn+j, (11)

where n denotes the grid index, n = 0, 1, 2, ...,N − 1, and the step
size h is defined as h = tn+1 − tn within the interval [a, b].
To address general third-order IVPs, additionalmethod equations
are derived from the first and second derivatives of eq. (11), ex-
pressed as:

z′(t) =
1
h

 ∑
j=0, 12 ,1

µ′j(t)zn+j + h
3
∑

j=0, 12 ,1,−r ,1

ζ′j (t)fn+j + h
4
∑
j=0,1

ζ′j (t)gn+j

 ,
(12)

z′′(t) =
1
h2

 ∑
j=0, 12 ,1

µ′′j (t)zn+j + h3
∑

j=0, 12 ,1,−r ,1

ζ′′j (t)fn+j + h4
∑
j=0,1

ζ′′j (t)gn+j

 .
(13)

To ensure accuracy, the following conditions are imposed:

z′(t) = δ(t), (14)

and

z′′(t) = ϕ(t). (15)

Evaluating eq. (11) at t = tn+j, j = r , 1 − r , and eqs. (12) and (13)
at all points t = tn+j, j = 0, r , 1

2 , 1 − r , 1, produces the following

general continuous schemes.

zn+r = (−((h3(1−2r)2(151+2r(206+r(−4707+2r(7189
322560(−1+r)r(−1+2r)

+2r(−3813+2r(31+2r(705+2r(−251+56r))))))))
322560(−1+r)r(−1+2r) )fn

+( (151h3−192h3r−320h3r2−576h3r3+

322560(−1+r)r(−1+2r)

4288h3r4−4800h3r5+1600h3r6)
322560(−1+r)r(−1+2r) )fn+r+

4h3(−1+r)r(4+(−1+r)r(15+(−1+r)r
315(−1+2r)

(−8+7(−1+r)r)))
315(−1+2r) fn+ 1

2

+(−23h3+192h3r+64h3r2−192h3r3−
322560(−1+r)r(−1+2r)

704h3r4+960h3r5−320h3r6

322560(−1+r)r(−1+2r) )fn+1−r+

( 23h3−192h3r+294h3r2+1756h3r3−5264h3r4+
322560(−1+r)r(−1+2r)

736h3r5−3392h3r6+51328h3r7−95872h3r8+
322560(−1+r)r(−1+2r)

64768h3r9−14336h3r10

322560(−1+r)r(−1+2r) )fn+1+

( (−151h4r+1661h4r2−6798h4r3+11352h4r4+

322560(−1+r)r(−1+2r)

1680h4r5−37632h4r651328h3r7−95872h3r8+
322560(−1+r)r(−1+2r)

64768h3r9−14336h3r10

322560(−1+r)r(−1+2r) )gn+

( (−23h4r+253h4r2−1038h4r3+1752h4r4−

322560(−1+r)r(−1+2r)

1008h4r5+2688h4r6−12672h4r7+20928h4r8

322560(−1+r)r(−1+2r)

−14464h4r9+3584h4r10

322560(−1+r)r(−1+2r) )gn+1+

( (322560r−1935360r2+4193280r3−3870720r4+

322560(−1+r)r(−1+2r)

1290240r5)
322560(−1+r)r(−1+2r) )zn+

(1290240r2−5160960r3+6451200r4−2580480r5)
322560(−1+r)r(−1+2r) zn+ 1

2

+
(1−2r)2r
−1+2r zn+1,

(16)

zn+1−r = ( (h3(1−2r)2(−23+2r(50+r(99+2r(−341+
322560(−1+r)r(−1+2r)

2r(−123+2r(49+2r(327+2r(−197+56r))))))
322560(−1+r)r(−1+2r) )fn

+( (23h3−192h3r−64h3r2+192h3r3+704h3r4

322560(−1+r)r(−1+2r)

−960h3r5+320h3r6

322560(−1+r)r(−1+2r) )fn+r
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−( 4h3(−1+r)r(4+(−1+r)r(15+(−1+r)r(−8+
315(−1+2r)

7(−1+r)r)))
315(−1+2r) )fn+ 1

2
+

( (−151h3+192h3r+320h3r2+576h3r3−

322560(−1+r)r(−1+2r)

4288h3r4+4800h3r5−1600h3r6

322560(−1+r)r(−1+2r) )fn+1−r

+( 151h3−192h3r−10458h3r2+68060h3r3−
322560(−1+r)r(−1+2r)

183184h3r4+237536h3r5−101440h3r6−104320h3r7

322560(−1+r)r(−1+2r)

+158080h3r8−78592h3r9+14336h3r10

322560(−1+r)r(−1+2r) )fn+1+

(−23h4r+253h4r2−1038h4r3+1752h4r4−1008h4r5+
322560(−1+r)r(−1+2r)

2688h4r6−12672h4r7+20928h4r8−14464h4r9+3584h4r10

322560(−1+r)r(−1+2r) )gn

+(−151h4r+1661h4r2−6798h4r3+11352h4r4+1680h4r5−
322560(−1+r)r(−1+2r)

37632h4r6+64128h4r7−52032h4r8+21376h4r9−3584h4r10

322560(−1+r)r(−1+2r) )gn+1

+−322560r2+1612800r3−2580480r4+1290240r5

322560(−1+r)r(−1+2r) zn+

1290240r2−5160960r3+6451200r4−2580480r5

322560(−1+r)r(−1+2r) zn+ 1
2
+

(1−3r+2r2)2

(−1+r)(−1+2r) zn+1,

(17)

hδn = ( h
3(1−2r)2(−151+2(−1+r)r(215+4296(−1+r)r))

322560r2(1−3r+2r2)2 )fn

+
−(151h3−174h3r)

322560r2(1−3r+2r2)2 fn+r

+
8h3(−1+r)2(2+9(−1+r)r)

315(1−3r+2r2)2 fn+ 1
2
+

(−23h3+174h3r)
322560r2(1−3r+2r2)2 fn+1−r+

( (23h3−174h3r+358h3r2+208h3r3−

322560r2(1−3r+2r2)2 )

1544h3r4+1728h3r5−576h3r6

322560r2(1−3r+2r2)2 )fn+1+

(−151h4r+1643h4r2−6536h4r3+12148
322560r2(1−3r+2r2)2

h4r4−10656h4r5+3552h4r6

322560r2(1−3r+2r2)2 )gn+

−23h4r+235h4r2−904h4r3+1652h4r4−1440h4r5+480h4r6

322560r2(1−3r+2r2)2 gn+1

+(−967680r2+5806080r3−12579840r4+11612160r5−

322560r2(1−3r+2r2)2

+ 3870720r6

322560r2(1−3r+2r2)2 )zn + ( 1290240r2−7741440r3+
322560r2(1−3r+2r2)2

+16773120r4−15482880r5+5160960r6

322560r2(1−3r+2r2)2 )zn+ 1
2
− zn+1,

(18)

hδn+r = (−((h3(1−2r)2(151+2r(−256+
322560r2(1−3r+2r2)2

r(−5837+6r(8205+4r(−6255+2r(4179+
322560r2(1−3r+2r2)2

16r(−70+r(−224+r(287+r(−141+26r)))
322560r2(1−3r+2r2)2 )fn

+( 151h3−1116h3r+1116h3r2+
322560r2(1−3r+2r2)2

26880h3r4−107520h3r5+161280h3r6

322560r2(1−3r+2r2)2

−107520h3r7+26880h3r8

322560r2(1−3r+2r2)2 )fn+r+

( 8h3(−1+r)2(2+3r(−6+
315(1−3r+2r2)2

r(17−14r+r3(−28+r(70+13(−4+r)r)
315(1−3r+2r2)2 )fn+ 1

2

+(−23h3+348h3r−1116h3r2+10752h3r5

322560r2(1−3r+2r2)2

−21504h3r6+15360h3r7−3840h3r8

322560r2(1−3r+2r2)2 )fn+1−r

+( 23h3−348h3r+1474h3r2+772h3r3

322560r2(1−3r+2r2)2

−18344h3r4+32976h3r5−19392h3r6+
322560r2(1−3r+2r2)2

−1087488h3r8+2050560h3r9−1926144h3r10

322560r2(1−3r+2r2)2

+890880h3r11−159744h3r12

322560r2(1−3r+2r2)2 )fn+1+

(−151h4r+2585h4r2−+57988h4r4

322560r2(1−3r+2r2)2

−70536h4r5−134880h4r6+684096h4r7−

322560r2(1−3r+2r2)2

1257984h4r8+1305600h4r9−802560h4r10

322560r2(1−3r+2r2)2

+273408h4r11−39936h4r12

322560r2(1−3r+2r2)2 )gn+

(−23h4r+409h4r2−2782h4r3+9092h4r4

322560r2(1−3r+2r2)2

−15240h4r5+23328h4r6−90048h4r7

322560r2(1−3r+2r2)2

278784h4r8−468480h4r9+430848h4r10

322560r2(1−3r+2r2)2

(−205824h4r11+39936h4r12

322560r2(1−3r+2r2)2 )gn+1+

(−967680r2+7096320r3−20321280r4

322560r2(1−3r+2r2)2

+28385280r5−19353600r6+
322560r2(1−3r+2r2)2

5160960r7

322560r2(1−3r+2r2)2 )zn+

( 1290240r2−10321920r3+32256000r4−

322560r2(1−3r+2r2)2

49029120r5+36126720r6−10321920r7

322560r2(1−3r+2r2)2 )zn+ 1
2

+(−1 + 4r)zn+1,

(19)
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hδn+ 1
2
=
−h3(1−2r)2(−23+4(−1+r)r(23+288(−1+r)rfn

322560r2(1−3r+2r2)2

−23h3fn+r
322560r2(1−3r+2r2)2 − ( h3(−1+r)2(325+

10080(1−3r+2r2)2

1392(−1+r)r
10080(1−3r+2r2)2 )fn+ 1

2

−
23h3fn+1−r

322560r2(1−3r+2r2)2 − ( −23h3+1520h3r2−

322560r2(1−3r+2r2)2

7648h3r3+15344h3r4−13824h3r5+4608h3r6

322560r2(1−3r+2r2)2 )fn+1

−(−23h4r+235h4r2−904h4r3+1652h4r4−1440h4r5

322560r2(1−3r+2r2)2

+480h4r6

322560r2(1−3r+2r2)2 )gn−

( 23h4r−235h4r2+904h4r3−1652h4r4+1440h4r5

322560r2(1−3r+2r2)2

−480h4r6

322560r2(1−3r+2r2)2 )gn+1−

( (322560r2−1935360r3+4193280r4−3870720r5+

322560r2(1−3r+2r2)2

1290240r6

322560r2(1−3r+2r2)2 )zn + zn+1,

(20)

hδn+1−r = ( (h3(1−2r)2(−23+2r(128+r(−179+
322560r2(1−3r+2r2)2

r(6r(−269+4r(143+2r(77+16r(14−116+
322560r2(1−3r+2r2)2

r(188+r(−119+26r))))))))))
322560r2(1−3r+2r2)2 )fn+

(−23h3+348h3r−1116h3r2+10752h3r5−

322560r2(1−3r+2r2)2

21504h3r6+15360h3r7−3840h3r8

322560r2(1−3r+2r2)2 )fn+r

( 8h3(−1+r)2(2+3r(−6+r(17−14r+r3(−28+
315(1−3r+2r2)2

r(70+13(−4+r)r))))
315(1−3r+2r2)2 )fn+ 1

2
+

( 151h3−1116h3r+1116h3r2+26880h3r4

322560r2(1−3r+2r2)2

−107520h3r5+161280h3r6−107520h3r7+
322560r2(1−3r+2r2)2

26880h3r8

322560r2(1−3r+2r2)2 )fn+1−r+

(−151h3+1116h3r+9022h3r2−143108h3r3+
322560r2(1−3r+2r2)2

740776h3r4−1995984h3r5−1690752h3r7−

322560r2(1−3r+2r2)2

1387008h3r8+3356160h3r9−2669568h3r10+
322560r2(1−3r+2r2)2

1026048h3r11+2913216h3r6−159744h3r12

322560r2(1−3r+2r2)2 )fn+1+

( 23h4r−409h4r2+2782h4r3−9092h4r4+15240h4r5

322560r2(1−3r+2r2)2

−23328h4r6+90048h4r7−278784h4r8+468480h4r9

322560r2(1−3r+2r2)2

−430848h4r10+205824h4r11−39936h4r12
322560r2(1−3r+2r2)2 )gn+

( 151h4r−2585h4r2+17630h4r3−57988h4r4+70536h4r5

322560r2(1−3r+2r2)2

+134880h4r6−684096h4r7+1257984h4r8−1305600h4r9

322560r2(1−3r+2r2)2

+802560h4r10−273408h4r11+39936h4r12
322560r2(1−3r+2r2)2 )gn+1+

( 322560r2−3225600r3+11934720r4−20643840r5

322560r2(1−3r+2r2)2

+16773120r6−5160960r7

322560r2(1−3r+2r2)2 )zn + ( −1290240r2+
322560r2(1−3r+2r2)2

10321920r3−32256000r4+49029120r5−36126720r6

322560r2(1−3r+2r2)2

+10321920r7

322560r2(1−3r+2r2)2 )zn+ 1
2
− (−3 + 4r)zn+1,

(21)

hδn+1 =
h3(1−2r)2(−23+2(−1+r)r(−41

322560r2(1−3r+2r2)2

+72(−1+r)r)
322560r2(1−3r+2r2)2 fn+

+(−23h3+174h3r)fn+r
322560r2(1−3r+2r2)2+

8h3(−1+r)2(2+9(−1+r)r)fn+ 1
2

315(1−3r+2r2)2

( (151h3−174h3r)fn+1−r
322560r2(1−3r+2r2)2+

−151h3+174h3r+10138h3r2

322560r2(1−3r+2r2)2

−54992h3r3+113416h3r4−103104h3r5+
322560r2(1−3r+2r2)2

34368h3r6

322560r2(1−3r+2r2)2 )fn+1+

( 23h4r−235h4r2+904h4r3−1652h4r4+
322560r2(1−3r+2r2)2

1440h4r5−480h4r6

322560r2(1−3r+2r2)2 )gn+

( 151h4r−1643h4r2+6536h4r3−12148h4r4+
322560r2(1−3r+2r2)2

10656h4r5−3552h4r6

322560r2(1−3r+2r2)2 )gn+1+

( 22560r2−1935360r3+4193280r4−3870720r5

322560r2(1−3r+2r2)2

+1290240r6

322560r2(1−3r+2r2)2 )zn+

(−1290240r2+7741440r3−16773120r4+
322560r2(1−3r+2r2)2

15482880r5−5160960r6

322560r2(1−3r+2r2)2 )zn+ 1
2
+ 3zn+1,

(22)



6 Yakubu et al. / Recent Advances in Natural Sciences 3 (2025) 142

h2ϕn = −
h3(1−2r)2(−157+26(−1+r)r(17+504(−1+r)r))

53760r2(1−3r+2r2)2 fn

+
(−157h3+186h3r)fn+r
53760r2(1−3r+2r2)2 −

(8h3(−1+r)2(3+14(−1+r)r))fn+ 1
2

105(1−3r+2r2)2

+
(29h3−186h3r)fn+1−r
53760r2(1−3r+2r2)2 + (−29h3+186h3r+94h3r2

53760r2(1−3r+2r2)2

−2800h3r3+7000h3r4−6720h3r5+2240h3r6

53760r2(1−3r+2r2)2 )fn+1+

( 157h4r−1849h4r2+7640h4r3−14460h4r4+12768h4r5

53760r2(1−3r+2r2)2

−4256h4r6

53760r2(1−3r+2r2)2 )gn + ( 29h4r−313h4r2+1240h4r3

53760r2(1−3r+2r2)2

−2300h4r4+2016h4r5−672h4r6

53760r2(1−3r+2r2)2 )gn+1+

215040r2−1290240r3+2795520r4−2580480r5+860160r6

53760r2(1−3r+2r2)2 zn

+(−430080r2+2580480r3−5591040r4+5160960r5

53760r2(1−3r+2r2)2

−1720320r6

53760r2(1−3r+2r2)2 )zn+ 1
2
+ 4zn+1,

(23)

h2ϕn+r = −( h
3(−157+2r(−221+r(6773+8r(−3878+

53760(−1+r)2r2

16r(−112+(−2+r)r(294+r(−275+96r))))))))
53760(−1+r)2r2 )fn

+( 157h3+128h3r+256h3r2−17408h3r3+
53760(−1+r)2r2(−1+2r)

50304h3r4−49920h3r5+16640h3r6

53760(−1+r)2r2(−1+2r) )fn+r+

8h3(1−2r)2(3+2r(2+r+3(−2+r)r2))
105(−1+2r) fn+ 1

2
+

(−29h3+128h3r+256h3r2+512h3r3−3456h3r4+
53760(−1+r)2r2(−1+2r)

3840h3r5−1280h3r6

53760(−1+r)2r2(−1+2r) )fn+1−r+

( 29h3−128h3r−350h3r2+2100h3r3+1680h3r4

53760(−1+r)2r2(−1+2r)

−672h3r5−93184h3r6+302080h3r7−390400h3r8

53760(−1+r)2r2(−1+2r)

+227840h3r9−49152h3r10

53760(−1+r)2r2(−1+2r) )fn+1+

(−157h4r+1535h4r2−4570h4r3−3640h4r4+
53760(−1+r)2r2(−1+2r)

56112h4r5−154112h4r6+215040h4r7−

53760(−1+r)2r2(−1+2r)

168320h4r8+70400h4r9−12288h4r10

53760(−1+r)2r2(−1+2r) )gn+

(−29h4r+255h4r2−730h4r3+840h4r4−

53760(−1+r)2r2(−1+2r)

4816h4r5+28672h4r6−71680h4r7+87680h4r8

53760(−1+r)2r2(−1+2r)

−52480h4r9+12288h4r10

53760(−1+r)2r2(−1+2r) )gn+1+

−215040r2+860160r3−1075200r4+430080r5

53760(−1+r)2r2(−1+2r) zn+

430080r2−1720320r3+2150400r4−860160r5

53760(−1+r)2r2(−1+2r) zn+ 1
2

+4zn+1,

(24)

h2ϕn+ 1
2
=

h3(47+2r2(−925+2r(1615+392r(−5+2r))
53760(−1+r)2r2(−1+2r) fn

+
−47h3fn+r+47h3fn+1−r

53760(−1+r)2r2(−1+2r)+

h3(−47+2r2(925−2r(1615+392r(−5+2r))
53760(−1+r)2r2(−1+2r) fn+1

+( 47h4r−365h4r2+990h4r3−1120h4r4+
53760(−1+r)2r2(−1+2r)

448h4r5

53760(−1+r)2r2(−1+2r) )gn+

(+47h4r−365h4r2+990h4r3−1120h4r4+
53760(−1+r)2r2(−1+2r)

448h4r5

53760(−1+r)2r2(−1+2r) )gn+1+

−215040r2+860160r3−1075200r4+430080r5

53760(−1+r)2r2(−1+2r) zn

+( 430080r2−1720320r3+2150400r4

53760(−1+r)2r2(−1+2r)

−860160r5

53760(−1+r)2r2(−1+2r) )zn+ 1
2
+ 4zn+1,

(25)

h2ϕn+1−r = ( h
3(29+2r(−35+r(−245+8r(70+r(245+

53760(−1+r)2r2

16r(28+(−2+r)r+154+r(−205+96r)))
53760(−1+r)2r2 )fn

+( 29h3−128h3r−256h3r2−512h3r3+3
53760(−1+r)2r2(−1+2r)

456h3r4−3840h3r5+1280h3r6

53760(−1+r)2r2(−1+2r) )fn+r+

8h3(1−2r)2(3+2r(2+r+3(−2+r)r2))
105(−1+2r) fn+ 1

2

+(−157h3−128h3r−256h3r2+17408h3r3−

53760(−1+r)2r2(−1+2r)

50304h3r4+49920h3r5−16640h3r6

53760(−1+r)2r2(−1+2r) )fn+1−r

+( 157h3+128h3r−14430h3r2+89140h3r3−

53760(−1+r)2r2(−1+2r)

231280h3r4+243040h3r5+93184h3r6

53760(−1+r)2r2(−1+2r)

−517120h3r7+551680h3r8−263680h3r9

53760(−1+r)2r2(−1+2r)

+49152h3r10

53760(−1+r)2r2(−1+2r) )fn+1+

(−29h4r+255h4r2−730h4r3+840h4r4−4816h4r5+
53760(−1+r)2r2(−1+2r)

28672h4r6−71680h4r7+87680h4r8−

53760(−1+r)2r2(−1+2r)

52480h4r9+12288h4r10

53760(−1+r)2r2(−1+2r) )gn+

(−157h4r+1535h4r2−4570h4r3−3640h4r4+56112h4r5

53760(−1+r)2r2(−1+2r)

−154112h4r6+215040h4r7−168320h4r8+70400h4r9

53760(−1+r)2r2(−1+2r)

−12288h4r10

53760(−1+r)2r2(−1+2r) )gn+1+

−215040r2+860160r3−1075200r4+430080r5

53760(−1+r)2r2(−1+2r) zn+

430080r2−1720320r3+2150400r4−860160r5

53760(−1+r)2r2(−1+2r) zn+ 1
2

+4zn+1,

(26)
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h2ϕn+1 =
h3(1−2r)2(−29+70(−1+r)r(−1+8(−1+r)r))

53760r2(1−3r+2r2)2 fn

+
(−29h3+186h3r)fn+r
53760r2(1−3r+2r2)2+

8h3(−1+r)2(3+14(−1+r)r)
105(1−3r+2r2)2 fn+ 1

2
+

(157h3−186h3r)fn+1−r
53760r2(1−3r+2r2)2 +

(−157h3+186h3r+14686h3r2−82160h3r3+
53760r2(1−3r+2r2)2

172120h3r4−157248h3r5+52416h3r6

53760r2(1−3r+2r2)2 )fn+1+

( 29h4r−313h4r2+1240h4r3−2300h4r4+2016h4r5

53760r2(1−3r+2r2)2

−672h4r6

53760r2(1−3r+2r2)2 )gn+

( 157h4r−1849h4r2+7640h4r3

53760r2(1−3r+2r2)2

−14460h4r4+12768h4r5−4256h4r6

53760r2(1−3r+2r2)2 )gn+1+

( 215040r2−1290240r3+2795520r4

53760r2(1−3r+2r2)2

−2580480r5+860160r6

53760r2(1−3r+2r2)2 )zn

+(−430080r2+2580480r3−5591040r4+5160960r5

53760r2(1−3r+2r2)2

−1720320r6

53760r2(1−3r+2r2)2 )zn+ 1
2
+ 4zn+1.

(27)

To maximize accuracy, the local truncation error of eq.(27) is
minimized with respect to r . The optimal value of r is deter-
mined as

r =
1

186

(
93 −

√
2666

)
. (28)

Substituting the optimal value of r into eqs. (16) to (27), we
derive the final form of the implicit one-step optimized hybrid
block method.

3. ANALYSIS OF THE METHOD
This section outlines the properties of the proposed method,
which are essential for evaluating its effectiveness and reliability
in solving general third-order IVPs.

3.1. ORDER AND ERROR CONSTANTS
The linear operator L associated with the proposed method, as
defined in eqs. (16) to (27) is expressed as

L[z(tn); h] =
∑
j=0[µjz(tn + jh)−

hδjz′(tn + jh) − h2ϕjz′′(tn + jh)−

h3ζjz′′′(tn + jh) − h4ξjz
′′′′

(tn + jh)],

(29)

where z(tn) is an arbitrary function that is differentiable over
[a, b]. Expanding eq. (29) as a Taylor series around tn and group-
ing terms gives

L[z(tn); h] = C0z(tn) + C1hz′(tn) + . . .+

Cphpzp(tn) + . . . + Cp+3hp+3zp+3(tn).
(30)

According to Alkasassbeh et al. [5], the method in eqs. (16) to
(27) is defined as having order p if the coefficients satisfy the
following conditions
C0 = C1 = C2 = . . . = Cp+1 = Cp+2 = 0 and Cp+3 , 0.
The vector Cp+3 is referred to as the error constant, and
cp+3hp+3zp+3(tn) is the principal local truncation error at the point
tn. The method is associated with the following error constants

C10 =
(
1.18614 × 10−10, 1.18614 × 10−10,

7.40788 × 10−10,−1.43822 × 10−11,

0, 1.43822 × 10−11,−7.40788 × 10−10,

0,−7.39487 × 10−9, 7.52363 × 10−9,

−7.39487 × 10−9, 0
)τ
.

Hence, the method achieves an order of p = 7.

3.2. ZERO STABILITY
The stability of the method is analyzed by examining eqs. (16),
(17), (18), and (23). The reformulated equation is given by

AZµ+1 = BZµ + hG0∆µ + h2G1Φµ+

h3[CFµ+1 + DFµ + hEGµ+1 + hHGµ],
(31)

where A, B, C, D, E, G, and H are m×mmatrices. The following
vectors are defined as

Zµ+1 = [zn+r , zn+ 1
2
, zn+1−r , zn+1],

Zµ = [zn−r , zn− 1
2
, zn−1−r , zn],

Fµ+1 = [fn+r , fn+ 1
2
, fn+1−r , fn+1],

Fµ = [fn−r , fn− 1
2
, fn−1−r , fn],

Gµ+1 = [gn+r , gn+ 1
2
, gn+1−r , gn+1],

Gµ = [gn−r , gn− 1
2
, gn−1−r , gn],

∆µ = [δn−r , δn− 1
2
, δn−1−r , δn],

Φµ = [ϕn−r , ϕn− 1
2
, ϕn−1−r , ϕn].

It is crucial to emphasize that zero stability refers to the stability
behavior as h→ 0. In this context, the stability condition can be
written as

ρ(λ) = det[λA − B]. (32)

The first characteristic polynomial is given by

ρ(λ) =

∣∣∣∣∣∣∣∣∣∣∣λ

1 − 193

279 0 − 1
558 (86 − 3

√
2666)

0 − 193
279 1 − 1

558 (3
√

2666 + 86)
0 −4 0 1
0 8 0 −4


−


0 0 0 − 1

558 (3
√

2666 + 86)
0 0 0 − 1

558 (86 − 3
√

2666)
0 0 0 3
0 0 0 −4


∣∣∣∣∣∣∣∣∣∣∣ .

This simplifies to

ρ(λ) = −8λ3(λ + 1). (33)

By solving eq. (33), we find that λ = 0, 0, 0,−1.
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Definition 1. Hybrid block method is considered to be zero-
stable if the roots λi, i = 1, 2, ..., s of the first characteristic poly-
nomial ρ(λ) satisfy |λi| ≤ 1 and for those roots with |λi| = 1, their
multiplicity must not exceed the order of the differential equation
being solved (see Yakubu [11]).

This shows that the method is zero-stable.

3.3. CONSISTENCY
Definition 2 (Lambert [12]). A hybrid block method is consid-
ered to be consistent, if it has order p ≥ 1.

Thus, the one-step hybrid block method has order p = 7 > 1.
This indicates that the method is consistent.

3.4. CONVERGENCE
Theorem 2 (Dahlquist [13]). The necessary and sufficient con-
ditions for numerical method to be convergent are that they must
be zero-stable and consistent.

Since the method meets both the conditions of zero-stability
and consistency by the above theorem 2, we concluded that the
method is convergent.

3.5. LINEAR STABILITY
The stability region of a numerical method provides insight into
its behavior in the complex plane, particularly regarding the
growth or decay of errors introduced during computation. This is
determined by applying the method in eq. (31) to the test equa-
tions z′ = λz, z′′ = λ2z, z′′′ = λ3z and z′′′′ = λ4z, where λ ∈ R.
By setting φ = λh, we obtain

Zµ+1 = M (φ)Zµ,

where

M (φ) = (A − φ3C − φ4E)−1.(B + φG0

+φ2G1 + φ
3D + φ4H ),

is the amplification matrix. By analyzing the spectral radius, we
determined the stability region, which is depicted in Figure 1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1. Stability region.

Definition 3 (Lambert [12]). A numerical method is said to be
A-stable if its region of absolute stability contains the entire neg-
ative complex half-plane.

The stability region of the method lies entirely within the nega-
tive complex half-plane, confirming that the method is A-stable
according to Ref. [12].

4. RESULTS AND DISCUSSION
This section evaluates the performance and efficiency of the new
technique, with the primary objective of demonstrating the im-
proved accuracy achieved by the proposed method.
The method is referred to as the Implicit One-Step Fourth-
Derivative Hybrid Block Method (IOFDHBM).
Example 1.
Consider the linear stiff IVP [1]

z′′′ + 5z′′ + 7z′ + 3z = 0, z (0) = 1,

z′ (0) = 0, z′′ (0) = −1.

The exact solution is z(t) = e−t + te−t .
Example 2.
Consider the following linear stiff system, which has been solved
in the literature by [3, 14]

z′′′1 = 1
68 (817z1 + 1393z2 + 448z3),

z1(0) = 2, z′1(0) = −12, z′′1 (0) = 20,

z′′′2 = − 1
68 (1141z1 + 2837z2 + 896z3),

z2(0) = −2, z′2(0) = 28, z′′2 (0) = −52,

z′′′3 = 1
136 (3059z1 + 4319z2 + 1592z3),

z3(0) = −12, z′3(0) = −33, z′′3 (0) = 5.

The exact solutions for this system are given as

z1(t) = et − 2e2t + 3e−3t ,

z2(t) = 3et + 2e2t − 7e−3t ,

z3(t) = −11et − 5e2t + 4e−3t .

Example 3.
Consider the linear stiff IVP

z′′′ + z′ = 0, z(0) = 0, z′(0) = 1, z′′(0) = 2.

The exact solution is z(t) = 2(1 − cos(t)) + sin(t).
Example 4.
Consider the non-linear IVP

z′′′ + zz′′ − z′ = 0,

z(0) = 1, z′(0) = −1, z′′(0) = 2.

Example 5.
Application to the non-linear Genesio equation: The following
nonlinear Genesio equation, initially introduced as a chaotic sys-
tem by Genesio et al. [15] is considered by Allogmany et al. [3].

z′′′ = −αz′′ − βz′ + f (z(t)),

where

f (z(t)) = −γ(t) + z(t)2, t ∈ [0, b],
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Figure 2. Comparison of absolute errors and efficiency for Example 1.

subject to

z(t0) = 0.2, z′(t0) = −0.3, z′′(t0) = 0.1,

with positive constants α, β, and γ satisfying αβ ≤ γ.
Since the analytical solution to the Genesio equation is not avail-
able, we use the IOFDHBM to solve the equation with the fol-
lowing parameters: t0 = 0, α = 1.2, β = 2.92, γ = 6 using
h = 0.1 over the interval t ∈ [0, 1].
Example 6.
Application to the boundary layer in physics and fluid mechan-
ics:
In physics and fluid mechanics, a boundary layer which refers to
the fluid layer adjacent to a boundary surface where viscosity has
a significant effect on the flow. The boundary layer equation, a
third-order non-linear differential equation is given by

2z′′′ + zz′′ = 0,

subject to

z(0) = 0, z′(0) = 0, z′′(0) = 1.

The Blasius equation, which describes boundary layer flow over
a flat plate, has been extensively studied by researchers such as
[3]. The objective is to solve this equation using the IOFDHBM
with h = 0.1 over the time interval t ∈ [0, 5].
Example 7.
Application to the thin film flow of a liquid on a surface:
Consider the engineering and physical problem of thin film flow
of liquid on a surface, extensively studied by researchers such as
[3, 14]. The fluid motion on a plane surface, moving in the same
direction along the plane, is governed by third-order ODEs

z′′′ = f (z(t)), (34)

where z(t) represents the motion of the fluid, and the function
f (z(t)) depends on the specific physical context, such as

f (z(t)) = z−2 − 1

for a fluid-draining problem on a dry surface, or

f (z(t)) = (1 + ϵ + ϵ2)z−2 − (ϵ + ϵ2)z−3 − 1

for a fluid-draining problem on a wet surface, where ϵ > 0 rep-
resents the film thickness.

In problems related to thin filmflowwith a free surface of viscous
fluid, the third-order ODE governing the free surface shape is
given by

z′′′ = z−ρ, t ≥ t0, (35)

subject to

z(t0) = µ1, z′(t0) = µ2, z′′(t0) = µ3,

where µ1, µ2, and µ3 are constants. This problem, which has been
solved by various authors, involves the conditions z(t0) = z′(t0) =
z′′(t0) = 1, with t0 = 0.
To solve this problem using the IOFDHBM, we consider µ = 2.

t Error in [1] Error in [16] IOFDHBM
0.1 1.0000 × 10−10 7.9936 × 10−15 1.1100 × 10−16

0.2 3.0000 × 10−10 1.1546 × 10−14 1.1569 × 10−15

0.3 7.0000 × 10−10 1.5543 × 10−14 2.3221 × 10−15

0.4 7.0000 × 10−10 2.2093 × 10−14 3.3964 × 10−15

0.5 6.0000 × 10−10 3.0309 × 10−14 4.6532 × 10−15

0.6 2.0000 × 10−10 4.0079 × 10−14 5.6758 × 10−15

0.7 9.0000 × 10−10 5.1625 × 10−14 6.5464 × 10−15

0.8 2.8000 × 10−9 6.4615 × 10−14 7.3446 × 10−15

0.9 5.4000 × 10−9 8.2045 × 10−14 7.8574 × 10−15

1 3.5000 × 10−9 1.0258 × 10−13 8.3166 × 10−15

Table 1. Comparison of absolute errors for Example 1, h = 0.1.

The results presented in Table 1 show that the IOFDHBM of-
fers higher accuracy than the hybrid block methods developed
by Mohammed et al. [1] (with order p = 7) and Osa et al. [16]
(with order p = 6). Notably, the new method not only exhibits
superior accuracy but also greater efficiency when compared to
the aforementioned methods, as illustrated in Figures 2(a) and
2(b).

h IOFDHBM Error in [14]
1
4 6.3158 × 10−9 5.7164 × 10−4

1
8 3.3073 × 10−11 4.8478 × 10−8

1
16 9.9276 × 10−12 4.1669 × 10−10

Table 2. Comparison of the maximum errors for Example 2 over the interval
t ∈ [0, 2].
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Figure 3. Absolute errors for Example 2 at different step sizes.
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Figure 4. Comparison of absolute errors and efficiency for Example 3.

In Table 2, the IOFDHBM, formulated with three off-step points,
demonstrates superior performance compared to the three-step
hybrid method with order p = 8 developed by Jikantoro et al.
[14]. Example 2 was solved over the interval t ∈ [0, 2] using var-
ious step sizes to highlight the consistency of these techniques.
The plot of absolute errors for the IOFDHBM in Example 2 is
presented in Figure 3(a), 3(b), and 3(c), illustrating the stability
of the solution at step sizes h = 0.25, 0.125, 0.0625 within the
interval t ∈ [0, 2].

Table 3 presents the results obtained for Example 3 over the inter-
val [0, 1] with h = 0.1. The results show a significant difference,
indicating that the IOFDHBM is more accurate than the methods
discussed by Olagunju et al. [7] and Osa et al. [16]. Figure 4(a)
displays the absolute error plot for Example 3, highlighting the
performance of the IOFDHBM compared to the existing meth-
ods. Figure 4(b) presents the efficiency curve, further emphasiz-
ing the comparative performance of these methods.

Table 3. Comparison of absolute errors for Example 3.
t Error in [7] Error in [16] IOFDHBM
0.1 3.3000 × 10−11 3.3307 × 10−16 4.5000 × 10−18

0.2 9.6700 × 10−10 3.6746 × 10−13 8.6000 × 10−18

0.3 3.8000 × 10−9 2.6199 × 10−9 9.0000 × 10−18

0.4 9.5300 × 10−9 1.7307 × 10−8 5.7000 × 10−18

0.5 1.9300 × 10−8 5.8127 × 10−8 1.4000 × 10−18

0.6 3.3900 × 10−8 1.4214 × 10−7 1.2100 × 10−17

0.7 5.4500 × 10−8 2.8366 × 10−7 2.6400 × 10−17

0.8 8.2200 × 10−8 4.9755 × 10−7 4.4200 × 10−17

0.9 1.1700 × 10−7 7.9519 × 10−7 6.5300 × 10−17

1 1.6200 × 10−7 1.1822 × 10−6 8.9500 × 10−17
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Figure 5. Approximation solution for Example 4.
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Figure 6. Approximation solution for Example 5.
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Figure 8. Comparison of absolute errors and efficiency for Example 7.

Table 4. Comparison of the approximation solutions for Example 7 using h = 0.01.
t Exact Solution Meshee et al. [17] RKD5 [17] THMD [14] IOFDHBM
0.0 1.000000000 1.000000000 1.000000000 1.000000000
0.2 1.221211030 1.22121100045 1.2212084858 1.2212100045
0.4 1.488834893 1.4888347799 1.4888467642 1.4888347798
0.6 1.807361404 1.8073613977 1.8073467642 1.8073613976
0.8 2.179819234 2.1798192339 2.1797930619 2.1798192339
1.0 2.608275822 2.6082748676 2.6082338883 2.6082748675

The plot in Figure 5 shows the numerical result for example 4,
computed over the interval [0, 2] with h = 0.1. The solution ini-
tially decreases towards t = 1 and then increases towards t = 2,
highlighting the stiffness of Example 4. In this context, stiffness
refers to the rapid changes in the solution relative to variations in
the independent variable or parameters, which can present chal-

lenges for numerical computation.
Figure 6 shows the numerical solution for Example 5, computed
over the interval t ∈ [0, 1] with h = 0.1. The plot indicates that as
the interval progresses from t = 0 to t = 1, the solution exhibits
a slight decrease.
Figure 7 shows the numerical solution for solving Example 6,
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computed over the interval t ∈ [0, 5] with h = 0.01.
Table 4 presents the numerical results obtained from three differ-
ent methods. The results shown in Figure 8(a) demonstrate that
IOFDHBM achieves higher accuracy than THMD and RKD5.
Additionally, Figure 8(b) illustrates the efficiency of all three
methods in solving Example 7. A noticeable difference in ac-
curacy is observed, with IOFDHBM outperforming THMD and
RKD5, which have orders p = 8 and p = 6, respectively.

5. CONCLUSION
This study introduces an implicit single-step optimized fourth-
derivative hybrid block method (IOFDHBM) for solving general
third-order initial value problems (IVPs). The analysis confirms
that the method is convergent, ensuring its robustness for a wide
range of IVPs. The results presented in Tables 1 to 4, along with
Figures 2, 4, and 8, demonstrate that the IOFDHBM consistently
delivers highly accurate solutions while maintaining computa-
tional efficiency. Compared to existing methods, the IOFDHBM
offers superior accuracy and stability due to the integration of
optimization techniques in its formulation. In conclusion, the
IOFDHBM is a reliable and effective numerical technique for
solving third-order IVPs, providing a significant improvement
over previously developed methods.
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