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A B S T R A C T

Little studies have been carried out in the investigation of some geological faults
associated with seismic activities in Nigeria; probably due to the fact that Nigeria
is believed to be sitting on a seismically safe African plate. However, the nation
has experienced series of tremors in the last few decades. Hence, there is a need to
investigate the lithological structural trends in some parts of Southwestern Nigeria to
determine the tectonic stability of the study area. This research therefore investigates the
litho-structural trends and the overburden thickness around Shaki area, Southwestern,
Nigeria. High resolution aeromagnetic data (HRAD) of Shaki (sheet 199) was obtained
from the Nigeria Geological Survey Agency; it was processed, enhanced, and interpreted
using Geosoft Oasis Montaj 6.4.2 data processing and analysis software package. The
depth to basement analysis were done using Euler Deconvolution (ED), Radially Average
Power Spectrum (RAPS) and Source Parameter Imaging (SPI) to evaluate the depth to
basement of the investigated area. Results of the estimated depth to basement obtained
from ED, RAPS and SPI revealed 136-6155 m, 0.2-0.65 m, 96-3229 m. Thus, based
on the results obtained from the investigated area, the basement of the area is relatively
shallow compared to sedimentary basement area. In conclusion, the faults in the area are
responsible for the earth tremor experienced around Shaki in August 2021. Thus, the
area could be further probed using seismic refraction method.
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1. INTRODUCTION
The earth’s structure is essentially composed of several compo-
nents: the crust, the top-most solid component of the mantle that
makes up the lithosphere and which is also known as tectonic
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plate;the inner core, and the outer core. Every layer has a differ-
ent chemical and physical makeup that can affect life on Earth’s
surface. Shifting plates as a result of mantle disturbance brought
on by variations in core temperature can result in earthquakes and
volcanic eruptions. These natural threats alter our surroundings,
and occasionally, inflict catastrophe on human lives and property
[1]. A fault is any general discontinuity or planar fracture that
has occurred as a result of considerable displacement caused by
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movements of the rock mass inside the volume of the rock [2].
Plate tectonic processes cause numerous faults in the Earth’s in-
terior, the degree of faults activities can be important for deter-
mining the risk of seismic shaking and tsunamis to the nearby
infrastructure and humans.

One of the world’s most serious hazards has been earthquakes
[3]. An earthquake is a complicated natural event that occurs
when a fault ruptures and releases sudden energy. It is a strong
groundmotion. The strength of the seismic event is described us-
ing several intensity scales and the observed impacts of ground
motion [3]. Even though Nigeria is not located on a known seis-
mic region, tremors were recorded at Dan Gulbi, Kano, Lupma,
Abuja, Kombani Yaya, Yola, Gembu, Abeokuta, Oyo, Ibadan,
Akure, Shagamu, Ijebu-Ode, Lagos, Okitipupa, and Warri be-
tween 1933 and 2006 [4, 5]. One of the most recent occurrence
was reported in Shaki in Oyo State, Nigeria in August 2021 with
magnitude ranging between 3.0 and 6.0 based on the Modified
Mercalli Intensity Scale. These tremors events suggest that Nige-
ria may not be as seismically inactive as previously believed.The
only seismic occurrences that were instrumentally documented
were those that occurred at Ijebu Ode in 1984, at Ibadan in
1990, and at Jushi-Kwari in 2000. Their surface wave magni-
tudes range from 3.7 to 3.9, their local magnitudes values range
from 3.7 to 4.2, and their body wave magnitudes ranges from
4.3 to 4.5 [4]. The theory behind the Earth’s tremor in Nigeria
is that they are caused by Earth movements connected to frac-
tures flowing NE-SW and weak spots that reach into the country
from the Atlantic Ocean [6, 7]. According to Onuoha (1988)
[8], the earthquakes were caused by plate boundaries partially
reactivating. According to regional stress models developed by
Sykes [9], Johnston and Kanter [? ], and Zoback (1992) [11],
stresses may have accumulated along plate boundaries and may
have moved toward the center of the plate, potentially causing
intraplate tremors, particularly in faults that already existed.

On the global scale, The Pacific, Indian, Atlantic, and other
oceans are the sites of the epicentres of the majority of earth-
quakes.Certain earthquakes cause tsunamis, which can cause
great damage, particularly to coastal communities and their in-
habitants. Research has demonstrated that all significant earth-
quakes that occur in the ocean have the potential to produce
tsunamis, even though subduction zones are known for produc-
ing them [12, 13]. Consequently, tsunamis may occur in coastal
regions of any nation; their severity is based on the movement of
the boundary lithospheric plate.

Regional-scale subsurface lithological characterization can be
conducted using a suite of geophysical survey methods, includ-
ing seismic reflection and refraction, gravity, electrical resistiv-
ity and electromagnetic induction, and magnetics [14–17]. In
this study, magnetic method was employed using aeromagnetic
data to determine the lithological stability and the overburden
thickness of area around shaki a basement complex in the South-
western part of Nigeria using Euler deconvolution, Power spec-
trum and Source parameter imaging depth estimation technique
to comprehend the mechanism behind Earth tremors in the area
and hence tectonic stability of the region.

1.1. DESCRIPTION AND GEOLOGICAL SETTING OF THE
STUDY AREA

The study area falls within latitude 8◦ 13’ 48’’ – 8◦ 40’ 12’’
N and Longitude 3◦ 12’ 0’’ – 3◦ 23’ 24’’ E on the Basement
Complex of the Southwestern, Nigeria (Figure 1). One of the
largest towns in Oyo State, which is made out of Pre-Cambrian
Basement rocks, is Shaki. Crystalline and metamorphic rocks
that are more than 550 million years old make up the major-
ity of the Basement Complex in southwest Nigeria. The crys-
talline Migmatite-Gneiss, low to medium-grade metasedimen-
tary, the younger granites that are found within the basement
complex, and Pan-African granitoids (older granite) are the three
categories of basement rocks found in the Southwest. The rock
groups within the study area include gneisses and granite with
granite been the predominant rock in Shaki as shown in Figure 2.
The structural features displayed by these rocks are folds, joints,
foliations, and microfolds with different deformational histories.

2. MATERIALS AND METHOD
The data set utilized was Shaki’s total field aeromagnetic data
set (sheet 199), which was obtained by Fugro Airborne Survey
Limited for the Nigerian Geological Survey Agency during the
high-resolution Airborne aeromagnetic survey of Nigeria con-
ducted between 2003 and 2009 [18]. The data set was gridded at
a suitable cell size to increase anomaly details and minimize pos-
sible noise and latitude effects, and it was leveled, de-cultured,
corrected, and recorded for the International Geomagnetic Ref-
erence Field (IGRF) [19]. Simplifying the complicated infor-
mation contained in the original data is a primary objective of
data processing, particularly when working with 2-dimensional
magnetic field data. Better comprehension and useful geologi-
cal deductions are made possible by the enhanced data quality
that is attained in this manner [20, 21]. One of these simpli-
fications is to create maps where the amplitude of the function
that is presented is directly related to a physical characteristic
of the rock’s underneath, together with other parameters and in-
trinsic structural traits [22]. The study area’s reduced-to-equator
residual aeromagnetic intensity (RTE) maps, as shown in Figure
3, were subsequently processed using a variety of data filtering
and filtering techniques, such as ED at different spectral indices,
RAPS, and SPI using Geosoft Oasis Montaj software.

2.1. EULER DECONVOLUTION
The basement depth of magnetic anomalies was determined by
estimating depth using the Euler deconvolution approach. An es-
timate of the source location and depth is provided by the Euler
deconvolution technique for a variety of targets with homoge-
nous sources (dyke, contacts, and sphere cylinder), each of which
has a unique structural index. Both the depth estimate method
and the border detector are used. Because it only necessitates a
minimal amount of prior knowledge regarding the geometry of
the magnetic source, it is frequently employed in the interpreta-
tion of magnetic bodies. As a result, no knowledge of the mag-
netization vector is necessary [23, 24]. The foundation of Euler
deconvolution techniques is the solution of Euler’s homogeneity
equation, which is provided as:

(x − xo)
∂M
∂x
+ (y − yo)

∂M
∂y
+ (z − zo)

∂M
∂z
= N (B−M ), (1)
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Figure 1. Nigerian map indicating the study region [4].

Figure 2. Geological map of the study area.

where N is the structural index (SI), x◦, y◦, and z◦ are the po-
sitions of the magnetic source that generates the total magnetic
field M measured at (x, y, z), and B is the regional value of the
total magnetic field.

The structural index, N, is the most important parameter in the

Figure 3. RTE residual aeromagnetic intensity map.

Euler deconvolution [23]. The magnetic field and decay rate are
related by a homogeneity factor. Essentially, N is a function of
the type of magnetic source and quantifies the fall-off rate, or the
rate at which the fields vary with distance from the source. We
can therefore determine the geometry and depth of the magnetic
sources by varying N.

2.2. SOURCE PARAMETER IMAGING TECHNIQUE
Thurston and Smith [25] defined the function of source parame-
ter imaging as a quick and powerful technique which can be used
for calculation of the depth of magnetic sources. Its accuracy is
shown to be ±20% when tests on real datasets with drill hole
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Figure 4. The plot Euler deconvolution at different SI.

control [26]. When compared the SPI method with the spectral
analysis method, the SPI has the advantage of producing a more
complete set of coherent solution points and it is easier to use,
where several blocks and manual fitting of power spectra are re-
quired when estimating the sedimentary thicknesses. This makes
use of the correlation between the source depth of the observed
field and the local wavenumber (k), and it can be computed for
any location in a data grid using both vertical and horizontal gra-
dients. The inverse of depth is defined by the local wavenumber’s
peaks, per the wavenumber theory. Equation 2 displays the local
depth (d), as described by Thurston and Smith, [25].

d =
1
k
, (2)

where k is the local wavenumber’s peak value over the step
source. The tilt angle [25] is defined as:

Tilt = tan−1
[
∂M
∂z
/HDRAD

]
, (3)

where,

HDRAD =

√(
∂M
∂x

)2

+

(
∂M
∂y

)2

. (4)

2.3. POWER SPECTRUM
A typical set of interfering waves with varying wavelengths and
orientations is thought to be the potential field. A power spec-
trum can be produced by plotting each wavelength’s power ver-
sus wave number, regardless of the direction. In frequency do-
main, the distribution of short to longwavelength can be prepared
and analyzed across all measured of high to low frequency. It is
simple to divide the power spectrum into segments of straight
lines, each of which represents the cumulative response of a dis-
tinct group of sources at a specific depth. The line segment’s
slope and depth are directly correlated [27]. The depth of the
magnetic sources’ basement is thus determined by the slope of
each segment [28]. According to equation (2), the radially aver-
aged power spectrum of magnetic data is a function of wavenum-
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Figure 5. Depth estimate and radially average power spectrum of the
study area.

Figure 6. Source parameter image.

ber and is connected to the depth of the basement of the deepest
sources [29].

Kmax=
logZb − logZt

Zb − Zt
, (5)

where, zt and zb stand for depths to top andmagnetic basement re-
spectively. Kmax is a function of wave number and it is expressed
in radian per unit distance.

3. RESULTS AND DISCUSSION
3.1. ESTIMATION OF DEPTH TO BASEMENT
The ED, RAPS, and SPI techniques were used to assess the
depths to the top of the study areas. Solutions to ED at various

Table 1. Summary of basement depth of the study area.
S/N Shallow depth (m) Deep Depth

(m)
Euler Deconvolution

1. 136-223 4651-6155

RAPS
2. 0-400 600-1600

SPI
3. 920 3230

Structural Index (SI) values of 0.0, 1.0, 2.0, and 3.0 were pre-
sented for the study area. The Euler solution of SI value of 2.0
and 3.0 reveal good match which is as a result of clusters around
some notable anomalies, thus, 0.0 and 0.1 values for Shaki are
not solutions and hence rejected.

On Euler Solution map (Figure 4), the Euler solutions value
of SI at 2.0 and 3.0 reveals good match which is as a function
of clusters around some notable anomalies. These are seen in
Figures 4c and 4d as clusters along the orientations of strikes
and lineaments on the Euler map of Shaki, which produce from
SI = 2.0 and SI = 3.0 beneath Shaki. Thus, the depth to basement
ranged between 136 and 4651 m for SI = 2.0 (Figure 4c) and 223
– 6155 m for SI=3.0 (Figure 4d). The ED summary of depth to
basement is shown in Table 1.

3.2. DEPTH ESTIMATE FROM RADIALLY AVERAGE POWER
SPECTRUM

Figure 5 displays the depth estimation curves, which are derived
from spectral analysis and the RAPS plots of the study area. The
deepest sources’ estimated depth is provided by the peaks lo-
cated in the first segment with the greatest fall, while the shal-
lowest sources’ depth is provided by the peaks located inside
the segment with the least gradient and these correlates to the
depth estimation curve of the area which made of two tangen-
tial straight lines segment but with depth range estimation of 0.4
– 1.6 km (deep depth to basement) and 0.2 – 0.65 km (shallow
depth to basement) for Shaki. Thus, the estimated depth to base-
ment ranges from 0.2 to 0.65 km. This is a very shallow depth to
the top of the magnetic sources, hence thin overburden which ac-
count for the area being basement complex. The RAPS summary
of depth to basement is shown in Table 1.

3.3. DEPTH ESTIMATION FROM SOURCE PARAMETER
IMAGING

From the results obtained in the SPI of the study area as shown
in Figure 6, shows that the anomalies vary in depths of shallow
to deep sources as 92 to 3229 m beneath Shaki. These results
established further that the overburden thickness of the area is
relatively low and this is responsible for geological competency
of the area. The summary of the SPI of depth to basement is as
shown in Table 1.
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4. CONCLUSION
In this study, HRAD of Shaki (sheet 199) has been processed,
enhanced, and interpreted using Geosoft Oasis Montaj, ArcGIS
and Rockwares data processing and analysis software to study
the lithology and structural disposition of the study area to deter-
mining the stability of the area.
The lithological setting of the study area as shown from the

anomaly maps revealed three distinct (low, intermediate, and
high) magnetic signatures about -400 to -503 nT; 0 to -400 nT; 0
to314 nT for Shaki. The depths to basement of the lithological
stability and overburden thickness of Shaki were examined using
the ED, RAPS, and SPI techniques.
The ED and SPI results used are in the same interval of shal-

lower depths compared to that of the RAPS. Thus, the overall
depth to basement in the area are relatively shallow, even around
the zones that are of low magnetic values. The faults in the area
could be as a result of the earth experienced tremor around Shaki
in August 2021. Thus, the area could be further probed using
seismic method of geophysical investigation.
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