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A B S T R A C T

The reclamation and reuse of wastewater is a vital process that helps to address water
pollution and scarcity problems. Nevertheless, wastewater treatment is also a significant
source of greenhouse gases (methane, carbon dioxide and nitrous oxide). Methane, the
most significant greenhouse gas is majorly emitted during anaerobic process, carbon
dioxide from aerobic processes while nitrous oxide is associated with nitrification and
denitrification processes. The increase in the level of these greenhouse gases is the
main cause of global warming and climate change and has resulted in change in weather
patterns, severe weather events, habitat loss and loss of wildlife. The adjusting of oper-
ating conditions, conversion of methane to fuel for energy production, carbon dioxide
capturing are some highlighted methods to minimize the release of these heat-trapping
gases from wastewater treatment plants. Also, methods of monitoring these GHG as well
as the direct and indirect effects of climate change on the management of wastewater are
also discussed in this review.
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1. INTRODUCTION
The contamination of waterbodies is a global issue that deserves
attention because of the damaging effects it poses to the environ-
ment and humans. The importance of proper handling ofwastew-
ater cannot be overemphasized and a key approach to manage
water quality crises is the treatment and remediation of polluted
water. Thus, the treatment of wastewater can therefore be con-
sidered a crucial part of a wholesome urban system.

Annually, approximately 380 billion cubic meters of wastew-
ater are produced worldwide, and it is projected to rise by about
24% by 2030 and 51% by 2050 [1]. The treatment of pol-
luted water plays a critical role in the sustainability of the en-
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vironment as this process removes several dangerous chemicals
and microorganisms that adversely affect mankind and animals.
Nevertheless, the different procedures involved in the treatment
of wastewater result in pollution associated with the emission
of greenhouse gases (GHG). According to the United Nations
World Meteorological Organization, the levels carbon dioxide,
methane and nitrous oxide gases reached a new record high in
2021; an increase of 50% compared with 1990 levels [2]. Re-
ports have stated that wastewater treatment plants (WWTPs) ac-
count for anthropogenic emission of 3-5% of global greenhouse
gases [3, 4]. Methane is considered the most significant green-
house gas as its global warming potential is more than that of
carbon [5]. It is mainly associated with anaerobic processes of
wastewater treatment. Initial projection reported global methane
emissions at an average of 2.3 and 33 Tg/yr from municipal and
industrial wastewater management [6–8]. Carbon dioxide con-
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tributions are majorly from aerobic processes and energy con-
sumption in wastewater treatment plants [9]. Nitrification and
denitrification processes in wastewater management release ni-
trous oxide into the atmosphere. Nitrous oxide is a potent green-
house gas and is projected to be the most ozone layer deplet-
ing substance [10]. It accounted for approximately between 12-
24 Tg/yr of global anthropogenic gas emissions from 2007-2016
and emissions from wastewater treatment accounted for 2.8% of
the total anthropogenic sources [11, 12].
The discharge of these gases into the atmosphere is one of the

major causes of climate change. Climate change is a change in
the average weather patterns over a long time that defines the
earth’s climates. Climate change is a peril to the wellbeing of
humans and our planet, and the negative effects predicted that
would result from climate change are now taking place.
Numerous studies have explored the challenges of wastew-

ater management [13–15] wastewater remediation and climate
change [9, 14, 16–18] energy implications of climate change on
wastewater management [1, 17, 19–21], greenhouse gas emis-
sions from wastewater treatment plants [15, 22–24]. However,
there is limited information on how wastewater management af-
fects climate change. This review paper aims to discuss vari-
ous wastewater treatment methods and the greenhouse gases they
emit and propose strategies to mitigate the discharge and impact
of these gases on the environment. Finally, it will present a com-
parison of these strategies, and current global emissions of green-
house gases from selected wastewater treatment plants world-
wide and address the problems associated with climate change
and wastewater management.

2. WATER POLLUTION AND SCARCITY CRISIS
Water pollution may arise from various pathogens and chemicals
introduced into waterbodies by untreated agricultural, industrial,
and domestic wastewater. The inflow of these pollutants into
water systems threatens access to safe water and causes envi-
ronmental problems because of its toxicity to animal and plant
life. The pollution of water bodies is the second most vital envi-
ronmental concern along with air pollution and the major factors
driving water pollution are population growth and urbanization.
About 70% of the earth is made up of water, but only 3% is fresh-
water with two-thirds of that frozen in arctic and glaciers. With
increased population and urbanization, world water demand is
expected to rise by 55% by 2050 [25] and global urban popula-
tion experiencing water scarcity is projected to double from 930
million in 2016 to 1.7-2.4 billion people in 2050 [26]. Clean wa-
ter is an irreplaceable resource and access to safe water is critical
for human survival and a sustainable ecosystem. For this reason,
the proper management of water is essential. Managing water
sustainably ensures water use in a way that accommodates cur-
rent and future water demands. This also means that everyone
is an actor in the ecosystem and because we depend on the re-
silience and renewability of ecosystem resources, communities
must findmeans to adapt to the loading capacity afforded to them
by their immediate ecosystem [27]. Sustainable water manage-
ment practices include water resources and governance, urban
water management, water management and food production, wa-
ter and energy sustainability, water and sustainable human de-
velopment, sustainable applications in hydrology and hydraulics

and water and wastewater treatment [27–30]. Also, according
to a United Nation policy brief, pollution prevention, safe use of
wastewater, treatment of polluted water and restoration and pro-
tection of the ecosystemwere listed as approaches to tackle water
quality problems [31].

3. WASTEWATER TREATMENT AND REUSE
The depleting rate of freshwater combined with the rapid surge
in population growth calls for continuous reclamation and reuse
of wastewater to fulfil the requirements of clean water for com-
munities. The treatment of wastewater involves a process that
removes impurities from wastewater; this process enhances the
quality of water to make it suitable for a specific purpose (domes-
tic, irrigation, industrial use and water recreation) and or returned
to the water cycle. According to reports, agriculture accounts for
92% of water consumption of which 70% are freshwater for ir-
rigation purposes [32–34]. This impacts heavily on water crisis.
Wastewater can be reclaimed and reused directly or indirectly
for agriculture, landscape irrigation, and recreational purposes.
Direct usage involves the channeling of treated wastewater into
some type of water system like the irrigation of a golf course.
Treated wastewater can be used indirectly when it is discharged
into ground water and later collected for use.
In a wastewater treatment plant, contaminated water passes

through various stages to become purified. The three major
stages (Figure 1) are the pre-treatment/primary treatment stage
(removal of debris using screens, skimming tanks, and grit cham-
bers), secondary treatment (removes soluble organic matter and
suspended organic solids using microorganism under aerobic,
anaerobic and or anoxic conditions), tertiary treatment (further
purification performed on wastewater susceptible to pollution)
[35]. Sludge collected from these treatment steps is further
treated and disposed of.
Overall, in a conventional wastewater treatment plant, a com-

bination of techniques is used in the various stages which could
be physical, chemical, biological and or physicochemical [36].
They include chemical precipitation, coagulation/flocculation,
floatation, chemical oxidation (with ozone, hypochlorite, and
hydrogen peroxide), biologically activated sludge, microbial
treatment, enzymatic decomposition, adsorption, ion-exchange
resins, catalytic and thermal oxidation, electrolysis, membrane
filtration, and advanced oxidation processes [37].

4. WASTEWATER TREATMENT AND THE ENVIRONMENT
Although the treatment of wastewater gives us access to an in-
valuable resource we must, however, appreciate its drawbacks
and implement solutions to minimize the negative environmental
problems it poses. The process of treating polluted water directly
emits relatively substantial amounts of methane, nitrous oxide
and carbon dioxide into the atmosphere while indirect emissions
result from energy generation, chemical use and transportation.
Current studies have found that wastewater treatment plants can
be a source of greenhouse gas emissions, contributing to air pol-
lution and climate change [17, 38, 39]. Similarly, studies have
implicated the emission of greenhouse gases and energy con-
sumption from wastewater treatment facilities as the primary
factors that have a significant effect on global climate change
[15, 40, 41]. Global warming is an established phenomenon that
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Figure 1. Schematic illustration of a conventional wastewater treatment plant.

results in rising sea levels, changes in weather patterns, and more
frequent and severe extreme weather events. Changes in snow
formation and melting for instance could lead to altered river
flow, droughts, floods, and other devastating impacts. Also, the
constant rise in global temperature has resulted in extinction and
habitat loss by different species and wildlife. The current levels
of the major greenhouse gases are presented in Table 1.

Wastewater treatment plants may be accountable for 23%
more greenhouse gas than earlier evaluated because of the pres-
ence of fossil fuels in detergent-laden water from municipal and
industrial wastewater [43]. The process of treating wastewater
in the United States resulted in an estimated 21.1 and 30.9 mil-
lion metric tons of CO2 equivalent of CH4 and N2O respectively
in 2021 which accounts for 0.7% of the total greenhouse gas
emissions in the country [44]. According to a report by Par-
ravicini et al the estimated cumulative emission of greenhouse
gases from European urban wastewater sector is about 35 million
tons CO2e/yr [45]. Sharawat et al. documented that the energy
consumption of a wastewater treatment plant in India amounts to
0.26 kW h/m3 of the treated wastewater. It stated that the over-
all share of electrical energy consumption is 84%, and 78% of
the electrical energy is consumed in the aeration process. The
direct and indirect greenhouse gas emissions from the wastewa-
ter treatment plant amount to 105 tCO2e/yr and 1316 tCO2e/yr,
respectively [46]. In China, the results of a study showed that
GHG emissions from WWTPs more than tripled from about 13
Mt CO2e in 2005 to about 31 Mt CO2e in 2020 [47]. These
emissions are associated with both the energy and chemical used

in wastewater treatment and the breakdown of organic materi-
als in the water treatment plant. A vital step towards achiev-
ing our environmental goals is to reduce the carbon footprint
incurred by wastewater treatment plants. We can achieve sus-
tainable wastewater treatment processes by understanding the
emission sources, comparing technologies based on carbon foot-
print, reducing energy consumption and using sustainable energy
sources [48].

5. GREENHOUSE GASES, SOURCES IN WWTPS, AND
MITIGATION STRATEGIES

5.1. METHANE

Methane is the second most important GHG with a shorter lifes-
pan in the atmosphere compared with carbon dioxide, however, it
has a global warming potential eighty-six times more than CO2
on a 20 year’ time scale [49]. In the atmosphere methane di-
rectly contributes 0.5 Wm−2 to total radiative forcing by long
lived greenhouse gases [50] and its production of tropospheric
ozone and stratospheric water vapour indirectly adds about 0.2
Wm−2 to its climate forcing [51]. The wastewater treatment sec-
tor is a significant source of methane, contributing about 6% of
global anthropogenic methane emissions [52]. A recent study
has stated that wastewater treatment plants emit about twice as
much methane than formerly thought [53]. The primary source
of methane in wastewater treatment facilities is from anaerobic
conversion of organic materials to methane and carbon dioxide
by methanogens. According to studies, methane was majorly de-
tected in the sludge line units (the primary sludge thickener, sec-
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Table 1. Current trends of main greenhouse gases from Global Atmosphere Watch in-situ observational network for GHGs. Units are dry-air mole fractions,
and uncertainties are 68% confidence limits [42].

CO2 CH4 N2O
Global mean abundance (2022) 417.9±0.2 ppm 193±2 ppb 335.8±0.1 ppb
Relative abundance in 2022 compared with 1750 150% 264% 124%
Absolute increase from 2021-2022 2.2 ppm 16 ppb 1.4 ppb
Mean absolute increase over the past 10 years 2.46 ppm/yr 10.2 ppb/yr 1.05 ppb/yr

ondary sludge thickener, digested sludge tank, dewatered sludge
tank and leakages from the digester) where anaerobic digestion
occurs [17, 53–55]. Approximately 72% of methane is emitted
from these units while dissolved methane in biological reactors
accounts for the rest and can be ascribed to wastewater contain-
ing dissolved methane which is not completely removed by the
biological system [55, 56]. During anaerobic degradation the fol-
lowing processes have been identified to lead to methane forma-
tion. The first process is the hydrolysis of proteins, carbohydrate
and lipids in the suspended organic solids to sugars, amino acids
and fatty acids. These (sugars, amino acids and fatty acids) are
further degraded by fermentative organisms or anaerobic oxidiz-
ers to either acetate, hydrogen or volatile acids (propionate, bu-
tyrate). The final step is methanogenesis/bio-methanation where
acetate and hydrogen are converted to methane by the action
of acetotrophic and hydrogenotrophic methanogens respectively.
The process is illustrated in Figure 2.

The reduction of methane emissions associated with wastew-
ater treatment will be significant in attaining global climate mit-
igation goals [57], and if effectively managed methane could
serve as a valuable fuel, natural gas and carbon source for
methanotrophs. Most wastewater treatment facilities encourage
the production of methane (from anaerobic digesters) for energy,
however, methane losses and leakages across the treatment sys-
tem remains an uphill task. Yoshida et al. recorded a wide range
of methane losses in a WWTP; higher methane emissions were
associated with operational problems like digestor foaming as
well as changes in environmental conditions such as temperature
and humidity [58]. Methane emissions can be attributed to its
ebullitive, and diffusive nature occurring in several places and
vary depending on the characteristics of the wastewater, the pro-
cess and configuration of the plant, and operational conditions
[53, 58]. The first approach to curb methane leakages is to cover
thickening sludge tanks appropriately and their emissions cap-
tured by hoodswhich could be used as fuel for energy production.
Some biological processes have been documented that oxidizes
methane to carbon dioxide and this minimizes the total GHG in
terms of carbon dioxide equivalents since methane has a higher
warming potential compared with carbon dioxide. In the pres-
ence of oxygen, methane can be oxidized with methanotrophs or
under anaerobic conditions with methanogens using nitrite, ni-
trate, sulphate or manganese(iv) as electron acceptor as shown in
equations (1)-(5) [61–66].

CH 4 + 2O2 → CO2 + 2H 2O

∆G◦ = −859 kJ mol−1 (1)

3CH 4 + 8NO2
− + 8H+ → 3CO2 + 4N 2 + 10H 2O

∆G◦ = −928 kJ mol−1 (2)

5CH 4 + 8NO3
− + 8H+ → 5CO2 + 4N 2 + 14H 2O

∆G◦ = −765 kJ mol−1 (3)

CH 4 + SO4
2− → HCO3

− + HS− + H2O

∆G◦ = −16.6 kJ mol−1 (4)

CH 4 + 4MnO2 + 7H+ → HCO3
− + 4Mn2+ + 5H 2O

∆G◦ = −556 kJ mol−1 (5)

Zhu et al. and Molina-Macias et al. reported on the successful
removal of methane with aerobic and anaerobic methane oxida-
tion coupled with a denitrification process which uses methane
as the electron donor [61, 67, 68]. This process not only removed
methane, nitrite, and nitrate but also eliminated the need for elec-
tron donor for the denitrification processes thereby reducing the
cost of external carbon sources [56, 69]. Also, methane loads
from the sewer system, which have been projected to account
for 1% of influent chemical oxygen demand (COD) load and are
mainly oxidized in the activated sludge tanks could be exploited
with these technologies to further decrease methane emissions
from wastewater treatment plants [55]. Remnants of methane
after the biological process can be sent to post combustion pro-
cesses [70].

5.2. CARBON DIOXIDE
Carbon dioxide is the most abundant GHG accountable for about
three-quarter emissions. According to IPCC, carbon dioxide is
responsible for 76% of global GHG emissions [71]. The major
source of CO2 emissions is from human activities such as burn-
ing fossil fuels, solid waste along with deforestation. From 2020
to 2022, the increase in global atmospheric CO2 concentration
was recorded to be 4.66 ppm. A decrease of 0.26 ppm observed
in 2022 have been attributed to absorption of CO2 by terrestrial
ecosystem and the ocean many years after a La Niña event [42].
The development of an El Niño event in 2023 will however, have
a significant effect on GHG concentrations. Wastewater treat-
ment facilities are important sources of CO2 as they contribute
about 3% to global GHG emissions [72]. Montieth et al. re-
ported a CO2 emission range of 5 – 994 g per cubic meter of
treated wastewater with the highest emissions coming from ex-
tended aeration and aerobic digestion [73]. Indirect emissions of
CO2 emanate from energy consumption of the various devices
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Figure 2. Proposed methane production pathway in anaerobic digestion [59, 60]. AM: Acetotrophic methanogens, HM: Hydrogenotrophic
methanogens.

used when operating WWTPs, production and transportation of
chemicals and fuels as well as waste disposal while direct emis-
sions are majorly from aerobic processes in wastewater treat-
ment. Even though direct emission of CO2 during wastewater
treatment is considered a carbon neutral process, evidence have
shown that 4-14% of the total organic carbon from the wastewa-
ter influent is from fossil origin [74, 75].

Currently, the major aim of the wastewater industry is to de-
crease carbon emissions. Campos et al. stated that increasing
solid retention time during sludge activation increases the rate
of COD oxidation to CO2 and this reduces the overall sludge
production [56]. This in turn decreases production of methane
and the associated CO2 emission. Conversely, reducing reten-

tion time improves energy efficiency of the WWTP and thereby
decreases indirect CO2 emissions. It is therefore important to ap-
ply the shortest retention time possible to obtain optimum efflu-
ent quality. The production of biochar from sludge [76–79], ap-
plication of constructed wetlands [80, 81], microbial electrosyn-
thesis [82–86], microalgae cultivation [85, 87–89] and microbial
fuel cells and carbon capture (MFC/MCC) [90–92] are recent
technologies that have been engineered to capture and mitigate
carbon from wastewater treatment plants. Microbial fuel cells
can convert chemical energy from wastewater to electrical en-
ergy while decomposing organic matter while MEC partially re-
verses the process to generate hydrogen or methane. In a recent
report by Dong et al., a new device that couples MEC with water
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Figure 3.Major pathways for biological generation of N2O during wastewater treatment; AOB (ammonia-oxidizing bacteria), NOB (Nitrite-Oxidizing
Bacteria), HB (Heterotrophic Bacteria).

Table 2. Conditions favoring N2O emissions in wastewater treatment plants [104, 110].
Low oxygen levels (nitrification) -limited aeration

-high organic load coupled with insufficient oxygen
High oxygen levels (denitrification) -excess aeration during nitrification stage
High nitrite (nitrification) -low solid retention time

-limited aeration
-low pH
-increased ammonium concentration
-low temperature

High nitrite (denitrification) -insufficient COD
-low pH
-Nitrite from nitrification stage
-high temperature

Low COD/N (denitrification) -efficient pre-sedimentation
-influent composition (low biodegradable organic carbon)

electrolysis was developed [93]. The microbial water electrol-
ysis cells (MWEC) achieved industrial-level high current den-
sity, and fast hydrogen production with low energy consumption
compared with MEC. These technologies are quite promising in
combating the effects of climate change by reducing carbon foot-
print however, most of them are still at lab-scale and require high
operating capital [94]. Direct air capture technologies (DAC)
trap CO2 directly from the atmosphere for storage and or uti-
lization. According to the International Energy Agency (IEA),
twenty-seven DAC plants have been commissioned to date glob-
ally, capturing about 0.01MtCO2 per year and if all planned facil-

ities were to advance, DAC placements would reach the required
2050 Net Zero Emissions by 2030 or about 75 MtCO2 per year
[95]. Very recently, the USA installed its first direct-air capture
facility that will be capable of removing 1000 tons of CO2 from
the atmosphere per year [96]. The facility which runs on renew-
able energy uses limestone to trap CO2 from the atmosphere; the
extracted pure CO2 is then stored and sent to concrete companies.
Another such facility in Iceland withdraws 4000 tons of CO2
from the atmosphere per year. Having such a facility situated
around WWTPs will go a long way in minimizing the amount
of CO2 in the earth’s atmosphere. The installation and opera-
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Table 3. A comparison of some mitigation strategies of GHGs in WWTPs.
GHG Mitigation

strategy
Cost Efficiency Scalability

Methane Anaerobic
digestion

Moderate to high initial invest-
ment, but operational costs can
be offset by energy production.

High efficiency in reducing methane
emissions by converting organic
waste into biogas. Can reduce emis-
sions up to 90%.

Highly scalable, suit-
able for both small and
large WWTPs.

Aerobic
treatment

Lower initial cost compared to
anaerobic systems, but higher
operational costs due to energy
requirements

Moderate efficiency in methane re-
duction, as it prevents methane for-
mation rather than capturing it

Scalable, but energy-
intensive, making it less
suitable for large-scale
applications

Methane leak
and repair

Low to moderate, depending
on the frequency and technol-
ogy used for detection

High efficiency in preventing emis-
sions

Easily scalable, appli-
cable to any size of
WWTP

Methane cap-
ture and uti-
lization

Moderate to high, depend-
ing on the infrastructure re-
quired for capturing and utiliz-
ing methane

Very high, as it directly captures
methane emissions and converts
them into energy

Scalable, but more
suitable for larger fa-
cilities with significant
methane production

Advanced
oxidation
processes

High, due to the need for spe-
cialized equipment and chemi-
cals

High efficiency in reducing a wide
range of pollutants, including GHGs

Suitable for large-scale
industrial applications

Carbon
diox-
ide

Carbon cap-
ture and stor-
age

Very high due to the need for
CO2 capture and compression
technologies and requires sig-
nificant energy

Capable of capturing up to 90% of
CO2 emissions from large sources

More suitable for large-
scale plants with signif-
icant emissions

Aerobic
treatment
processes

Moderate initial investment
with higher operational costs
due to energy requirements for
aeration

Effective in reducing CO2 emissions
by promoting the breakdown of or-
ganic matter through aerobic bacte-
ria

Suitable for small to
medium-sized plants

Algal carbon
capture

Medium to high. Depend-
ing on the size and technology
used for algal ponds. Energy
inputs are relatively low once
system is established

Can capture around 50-70% of CO2
emissions from treatment ponds

Better suited for
WWTPs with large
land availability and
warm climates

Constructed
wetlands

Low to moderate depending on
design and scale

Moderate efficiency in reducing
CO2 emissions through natural
processes and plant uptake

Highly scalable, suit-
able for small commu-
nities and decentralized
systems

Energy ef-
ficiency
improve-
ments/use of
renewable
energy

Medium to high, depending on
the scale of the plant and tech-
nology used but can decrease
operational cost due to energy
savings

Reduces CO2 emissions from en-
ergy use by up to 20-30%

Highly scalable across
different WWTP sizes

Biochar pro-
duction

Moderate, with potential rev-
enue from biochar sales

High efficiency in sequestering car-
bon by converting organic waste into
biochar through pyrolysis

Suitable for small to
medium-sized plants

Nitrous
oxide

Process
control op-
timization
through
improved
oxygen man-
agement

Medium, depending on the
scale of the plant and the need
for system upgrades but low
operational cost due to energy
savings

Effective in reducing N2O emissions
by maintaining optimal dissolved
oxygen levels. Can reduce N2O
emissions by 20-40% depending on
the system and existing inefficien-
cies

Scalable across all plant
sizes, especially useful
for medium and large
WWTPs where aera-
tion is a major energy
consumer
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Partial
nitrifica-
tion/anaerobic
ammonium
oxidation

Moderate to high initial invest-
ment, but operational costs are
relatively low due to reduced en-
ergy requirements

High efficiency in reducing N2O
emissions (80-90%). Signifi-
cant reductions in energy use
and CO2 emissions (around 50%
lower than conventional nitrifica-
tion/denitrification processes)

Suitable for medium to
large wastewater treat-
ment plants with high
ammonia loads

Algal based
treatment

High, particularly for photo-
bioreactor systems but medium
operational cost as agal systems
require light and CO2 but mini-
mal energy compared to conven-
tional processes

Can reduce N2O emissions by up to
70%

Limited scalability,
as algal systems re-
quire large land areas
and consistent light
sources, making them
impractical for urban
WWTPs

Methanol
step dosing

Moderate, depending on the
availability and cost of methanol

High efficiency in reducing N2O
emissions by providing a consistent
carbon source for denitrification

Suitable for medium to
large-scale plants

tion of renewable energy systems are necessary for the energy-
intensive wastewater treatment sector. The use of solar photo-
voltaic systems has been reported to reduce carbon emissions by
up to 40% and integrating renewable energy sources (biogas, so-
lar energy) could provide 88% of annual energy requirements of
WWTPs [97, 98]. Campana et al. developed a 100% renew-
able WWTP model by integrating photovoltaic systems, wind
turbines, multi-energy storage technology, and reverse osmosis
tertiary treatment to absorb power production [99]. The model
was applied to different WWTPs worldwide and the best model
design involved creating a system where 70% of energy is from
renewable sources which resulted in the lowest overall cost when
considering the present value of all future costs and saving.

5.3. NITROUS OXIDE

Nitrous oxide is a powerful greenhouse gas with a global warm-
ing capacity 265 times that of CO2 and an atmospheric lifetime of
114 years [100]. It is chemically inert in the troposphere where
it spends most of its lifetime before moving to the stratosphere
where it eventually destroys stratospheric ozone. Research has
shown that 40% of total N2O emissions are from human activi-
ties such as agriculture, land use, combustion of fossil fuel and
solid waste, industrial activities as well as wastewater treatment
[101]. In 2021, N2O emissions accounted for 6% of all GHG
emissions from human activities in the USA and 5% of anthro-
pogenic source of N2O are from wastewater treatment facilities
[102], [103]. Globally, the wastewater treatment sector is respon-
sible for 3% of anthropogenic nitrous oxide emissions[104]. In
wastewater treatment plants, nitrous oxide is produced in area
of high biological oxygen demand and low oxygen, such as the
influent lines, settling tanks, activated sludge units and emitted
primarily in the aerobic compartments mainly due to active strip-
ping and ammonia-oxidizing bacteria [105]. The twomajor path-
ways are autotrophic nitrification (via nitrifier denitrification and
or hydroxylamine oxidation) and heterotrophic denitrification as
shown in Figure 3. The input of heterotrophic denitrifying bacte-
ria is only important when nitrite and or are present in the anoxic
stage [106]. The involvement of both pathways is yet to be fully
understood because nitrous oxide can be formed in the anoxic
stage and then be stripped to the gas phase in the aerated zone.

However, there is strong evidence that both nitrifier denitrifica-
tion and breakdown of hydroxylamine oxidation intermediates
are always involved [107]. Nitrous oxide can also be produced
chemically in reactions involving hydroxylamine, nitrite and ni-
troxyl compounds [108]. Such reactions have been suggested
to happen in wastewater treatment plants; the formation of ni-
tric oxide and nitrous oxide in activated sludge by ferrous iron
[109]. The significance of this chemical pathway in wastewater
treatment plants is, however, yet to be established.

According to studies the factors that affect the emission ofN2O
from wastewater treatment systems are the concentration of dis-
solved oxygen, transient anoxic and aerobic conditions, shift in
process conditions, nitrite accumulation, pH, substrate compo-
sition, COD/N ratio, and temperature [104, 107]. A summary
of these conditions is shown in Table 2. Hence, understanding
the reactions and factors affecting N2O production in wastewater
treatment facilities can help mitigation through improved plant
design and operation.

Similarly, optimizing the above-mentioned process conditions
will be a very effective way to minimize the emission of nitrous
oxide fromwastewater treatment plants. Several laboratory stud-
ies have demonstrated various strategies to minimize N2O emis-
sions. In a study by Yang et al., they showed that N2O emissions
can be reduced by 50%when NH4 and NO2

− are sustained at low
levels via step feeding [111]. High solid retention times also sup-
port low ammonia and nitrite concentrations, higher dissolved
oxygen and increased ammonia-oxidizing bacteria biomass con-
centration. These conditions have been suggested to minimize
N2O production in nitrification processes [56, 104, 112]. During
denitrification, high dissolved oxygen hinders N2O reductase ac-
tivity which leads to accumulation of N2O [104]. In a study by
Law et al. an increase in pH from 6-8 was observed to have
a major impact on the rate of ammonia oxidizing bacteria en-
riched culture which yielded maximum N2O production at pH 8
in a partial nitritation system [113]. Addingmethanol as an exter-
nal carbon source prevented 95% N2O emissions in both aerobic
and anoxic phases [114]. The use of large bioreactors and in-
fluent flow-balancing set-ups have been proposed to enable sys-
tems with the capacity to buffer loadings andminimize the risk of
transient oxygen loss [107]. Nitrous oxide emissions can also be
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minimized by limiting nitrous oxide stripping by aeration to pro-
mote consumption by microorganisms [56, 115]. A mitigation
strategy implemented in a full-scale study of a WWTP run on se-
quencing batch reactor resulted in a 35% reduction of N2O emis-
sions and 20% saving on aeration energy. The authors attributed
N2O reduction to implementing a multi-pathway N2O produc-
tion mathematical model based on lowering dissolved oxygen
levels [116]. This shows that full-scale mitigation is feasible,
and laboratory studies will most likely be effective in full-scale
plants. Another full-scale study also ascribed the 10% total car-
bon footprint reduction to drop in N2O emissions via decreased
dissolved oxygen levels and enhanced mixed liquor recirculation
[117]. Algal technologies studied for bioremediation of wastew-
ater could also present solution for nitrous oxide emissions in
WWTPs [118–120]. Also, the use of membrane aerated bioreac-
tors has been reported to minimize nitrous oxide emission with
efficient nutrient removal [121, 121, 123] even on a full-scale
WWTP [124]. A summary of a comparison of mitigation mea-
sures for GHGs in WWTPs is presented in Table 3.

6. MONITORING GREENHOUSE GAS EMISSIONS FROM
WWTPS

WWTPs contribute significantly towards emission of anthro-
pogenic GHG and apart from applying measures to minimize
their emission, it is also vital to monitor these emissions in or-
der to understand how much they impact the environment. One
way to keep track of these emissions is to link the emission of
GHGs with a particular activity in the plant in order to appropri-
ately estimate the quantity of emissions. In addition, proper doc-
umentation/record keeping is important for future reference. The
GHG Protocol Corporate Standard defined three scopes to exam-
ine when estimating the GHG emissions of a facility/company
[125]. Scope 1- includes direct emissions from sources owned
or controlled by the company such as on-site energy, natural gas,
emissions from fleet of vehicles as well as emissions released
during industrial processes. Scope 2- represents indirect emis-
sions from purchased or acquired energy. Nevertheless, if the re-
porting facility generates its own energy on-site from owned or
controlled sources, then emissions associated with energy gen-
eration are categorized as direct scope 1 emissions. Scope 3-
comprises all indirect emissions that arise as a result of the activ-
ities of the reporting company, i.e., emissions from sources not
owned or controlled by the company. An example is the emis-
sion of GHG that occurs during the production of chemicals that
are used in WWTPs. In the U.S., the Greenhouse Gas Reporting
Program (GHGRP) tracks gas emissions from various sectors,
including industrial waste landfills, municipal solid waste land-
fills, wastewater treatment facilities. The GHGRP provides data
on the total reported emissions from subsector, trend of annual
reported GHG emissions, location and emissions for each report-
ing facility in the waste sector [126].

In quantifying GHG emissions, field-based measurements are
vital for comprehensive GHG assessments as they provide di-
rect estimates of GHG emissions and help build assumptions for
models and develop emissions factors [127]. Estimation mod-
els are also used such as empirical models, life-cycle assessment
models, process-based models and proxy indicators [128–131].
The combination of empirical models to describe GHG emis-

sions and mechanistic models to describe the performance of a
WWTP have also been documented to estimate GHG emissions
of WWTPs [129, 132]. A process model developed by Bridle
et al., detailed some selected direct and indirect GHG emission
sources in WWTPs and they include CO2 and NO2 emissions
from biotreatment, CO2 and CH4 from sludge digestion, energy
use for mixing, pumping, and aeration which leads to CO2 emis-
sions, sludge disposal/reuse, truck emission trip,CO2 emissions
mineralization, GHG emissions from chemical use and power
credit from biogas use [133, 134]. Table 4 presents an inventory
of the emission of GHGs from different wastewater treatment
plants along with some country inventory.

7. THE IMPACT OF CLIMATE CHANGE ON WASTEWATER
TREATMENT PLANTS

Because our world cannot do without treated water, we must rec-
ognize how climatic events worsened by GHGs emissions affect
wastewater treatment plants. It can be said that climate change
has a two-fold outcome on water resources and wastewater treat-
ment facilities. Change in weather patterns, extreme weather
events affect operational processes in WWTPs and because of
water scarcity, the reclamation and reuse of wastewater has be-
come inevitable as climate change advances. Then again, the
emission of heating trapping GHGs from wastewater treatment
adds to the problem of climate change.

Climate change is a major concern for wastewater treatment
facilities. According to Zouboulis and Tolkou, rainfall, snow-
fall, rain on snow event (generates flood), storm surge, extreme
temperatures, rise in sea levels, drought, ice, frost andwind speed
are particularly significant climate factors that affects wastewater
treatment plants [18]. Themanagement of wastewater can be dis-
rupted by these climatic factors. Extreme events can overwhelm
the capacity of sewer systems and can result in untreated effluents
overflowing the treatment system and pouring into surrounding
waterbodies. The impacts of climate change can be directly asso-
ciated with climate change on wastewater infrastructure or indi-
rectly associated with climate change such as the decrease in wa-
ter usage associated with water conservation [18]. A reduction in
water use reduces the water that flows into wastewater collection
and treatment systems, meaning a decreased water volume but
same waste concentration. This can result to inadequate water
to move waste and solid through the system; an increase in vis-
cosity of wastewater and difficulty in system cleaning creating
possible hydraulic and corrosion problems [18, 145]. The im-
pact of intense rainfall and drought can directly affect the work-
ing of a WWTP by causing sanitary sewer overflow and reduced
river and stream base flow respectively. Intense rainfall can cause
heavy inflow of water into sewer systems resulting in overload of
sewers; thus, allowing raw sewage into homes and surrounding
waterbodies as it escapes sewer systems. This situation is known
as sanitary sewer overflow. Increased frequency of this event
is likely to create more instances of serious environmental con-
tamination and health problems [146]. In drought prone areas,
climate change can potentially cause a decrease in stream and
river base flow. Base flow is used to determine effluent require-
ments by theWWTP and as this decreases, effluent requirements
become more severe and may the installment of other treatment
amenities in the WWTP to meet those requirements [18]. De-
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Table 4. Greenhouse gas emissions of some selected wastewater treatment facilities and country inventory.
Wastewater treatment facility CH4 CO2 N2O Country Reference
Antalya City Hurma WWTP –
210,000 m3/day Lara WWTP -
62,500 m3/day

47,029 tCO2eq/yr 52,423 tCO2eq/yr 33,006 tCO2eq/yr Türkiye [135]

Turkish Greenhouse Inventory 2018- 112.15
ktCO2eq

- 2018- 7.38 ktCO2eq Türkiye [136]

2019-113.32
ktCO2eq

- 2019- 7.46 ktCO2eq

2020-115.09
ktCO2eq

- 2020-7.69 ktCO2eq

2021-118.86
ktCO2eq

- 2021-7.91 ktCO2eq

Southwest Germany Ru-
elzheim WWTP – 5000
m3/day Bellheim WWTP –
14700 m3/day

*491.365 g-C d−1 - *15.748 g-N d−1 Germany [4]

Southside of Guelph City 133,200.18
CO2eq.kg/day

17495.54
CO2eq.kg/day

1924.48
CO2eq.kg/day

Canada [137]

Several WWTPs in various
parts of China

2018- 53-54 Mt
CO2eq/yr
2019- 55-56 Mt
CO2eq/yr

2018- 57-58
MtCO2eq/yr
2019- 60-61
MtCO2eq/yr

2018- 48-49
MtCO2eq/yr
2019- 51-52
MtCO2eq/yr

China [15]

Himachal Pradesh Sewage
Treatment Plants
< 1 MLD (24 Nos), 1-3 MLD
(26 Nos), > 3 MLD (9 Nos)

3103.3 tCO2eq/yr 2522.7 tCO2eq/yr 9303.4 tCO2eq/yr India [138]

Mumbai Metropolis Sewage
Treatment Plan (100 MLD;
treats ∼35 MLD)

0.002 kgCO2eq/m3 - 0.011 kgCO2eq/m3 India [139]

Apulian, Southeast Italy
183 WWTPs; 4,807,354 PE

69.0 KgCO2/PE·y 95.9 KgCO2/PE·y 72.7 KgCO2/PE·y Italy [140]

Puducherry, South of Chennai
Sewage Treatment Plant 17.8
MLD

15748 tCO2eq/yr 4650 tCO2eq/yr 718 tCO2eq/yr India [141]

Nigerian Greenhouse Inven-
tory

2015-14635.4
GgCO2eq 2016-
15025.0 GgCO2eq
2017-1533.18
GgCO2eq

- 2015-5842.2
GgCO2eq
2016-5997.8
GgCO2eq
2017-5997.8
GgCO2eq

Nigeria [142]

Swedish WWTP
805,000 m3/yr (treated
wastewater); 147,300,000 PE

*28.5-33.5 kg CH4
h−1

- *4.0-6.4 kg h−1 Sweden [143]

Ain Taoujdate WWTP Morocco [144]
2013-27,589 PE 7141.68 KgCO2/y - 1417.83 KgCO2/y
2018-30,807 PE 7920.05 KgCO2/y - 1662.36 KgCO2/y
2019-31,465 PE 4927.104 KgCO2/y - 1697.87 KgCO2/y

MLD- million liters per day, PE- population equivalent

crease in rainfall can cause possible aquifer contamination, due
to insufficient water to constantly recharge aquifers and this can
pose potential health and environmental risks [147]. A summary
of the impact of climate change as it affects the different areas
of wastewater management is presented in Table 5. To set up ro-
bust wastewater treatment facilities, engineers should work with

climatologists and regulating agencies to determine and predict
climate patterns and or the impact of climatic events. This will go
a long way in alleviating problems experienced in the operations
of the wastewater treatment plants.
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Table 5. Impact of climate change on different components of wastewater system [148].
Components of
waste water sys-
tem

Climate factors

Increased rainfall Decrease in
rainfall/drought

Rise in sea-level Temperature Wind

Wastewater
conveyance

-increased over-
flows, blockages
and breakages

-corrosion
resulting in
increased waste
concentration

-breaking of pipes due
to increased groundwa-
ter level
-corrosion
-erosion causing dam-
age to infrastructure

-increased odors -increased block-
ages, damages
and breakages
related to rainfall
events and or
storms

Pump stations -increased over-
flows and block-
ages

-corrosion
resulting in
increased waste
concentration

-corrosion
-erosion
-flooding resulting in a
reduction in the service
zone of the pump sta-
tion

-blockages caused
by user behavior
changes in hot
weather (e.g.,
flushing of wet
wipes)

-increased block-
ages, damages
and breakages
related to rainfall
events and or
storms

WWTP in gen-
eral

-increased in-
flows leading to
recurrent bypass-
ing
-power outages
associated to
storm events

-increased con-
centration of
influent risking
higher toxicity
levels

-flooding and damage
of infrastructure
-elevated groundwater
table impeding sludge
management dewater-
ing

-the performance
of biological sys-
tems, oxidation
ponds and sludge
management
are affected by
temperature
-odors

-increased block-
ages, damages
and breakages
related to rainfall
events and or
storms

On-site wastew-
ater

-waterlogged
soils affect soak-
age capability
-ecological
changes to soak-
age fields

-ecological
changes to
soakage fields

-waterlogged soils af-
fect soakage capability
-ecological changes to
soakage fields

-performance
varies with tem-
perature
-odors

8. CONCLUSION

The importance of wastewater treatment cannot be overempha-
sized. However, it is important to recognize that the processes
involved in the treatment of wastewater are significant sources
of GHGs. The impact of these emissions on the environment
is palpable as the effect of climate change are now obvious.
Apart from optimizing processes and plant designs to minimize
GHG emission various methods have been implemented to curb
their release. Microbial electrosynthesis, microalgae cultivation,
microbial carbon capture and direct carbon capture are recent
technologies for mitigating carbon dioxide emissions. Methane
can be captured and serve as natural gas and carbon source for
methanotrophs and in denitrification process in wastewater treat-
ment. The use of algal technologies has been suggested as a so-
lution for nitrous oxide emission while membrane aerated biore-
actors have been reported to minimize nitrous oxide emission in
a full scaleWWTP. The use of renewable energy will aid in mini-
mizing emissions from energy use as well as save energy. Imple-
menting these solutions and monitoring the scope of emissions
will serve in combating environmental problems caused by emis-
sion of GHGs and mitigate impact on climate change and will
also ameliorate difficulties faced in the management of wastew-
ater in wastewater treatment plants. Continuous research is how-

ever, needed to keep abreast the relationship between wastewater
treatment, greenhouse gases and climate change and to develop
more effective solutions to mitigate future problems.
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