
Proceedings of the Nigerian Society of Physical Sciences 1 (2024) 84

Published by Nigerian Society of Physical Sciences. Hosted by FLAYOO Publishing House LTD

Proceedings of the Nigerian Society of Physical Sciences

Journal Homepage: https://flayoophl.com/journals/index.php/pnspsc

Application of shifted Vieta-Lucas polynomials for the numerical treatment of
Volterra-integro differential equations

Ikechukwu Jackson Otaidea,∗, Matthew Olanrewaju Oluwayemib,c, Kenneth Oke Ogehd

aDepartment of Mathematics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
bDepartment of Mathematics and Statistics, Margaret Lawrence University, Galilee, Delta State, Nigeria
cSDG 4 (Quality Education Research Group), Landmark University, Omu-Aran, Kwara State, Nigeria
dDepartment of Mathematical Sciences, Edwin Clark University, Kiagbodo, Delta State, Nigeria

A B S T R A C T

In this study, the numerical solution of the Volterra-integro differential equations was obtained by applying the variational iteration
strategy with the shifted Vieta-Lucas polynomials. The proposed method builds the shifted Vieta-Lucas polynomials for the
Volterra-integro differential equation which are then used as basis functions for the approximation. Numerical examples were given
to establish the effectiveness and dependability of the recommended approach. Calculations were performed using Maple 2022
software.
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1. INTRODUCTION
Volterra integro-differential equation (IDE) is widely used in
many fields of science and engineering and in particular, Fluid
dynamics and its applications. The Volterra IDE incorporates
models for problems involving ordinary differential equations
and partial differential equations with boundary and initial con-
ditions which made it of interest and worth while to study. Dif-
ferent numerical techniques have previously been used to study
the Volterra IDE, numerically, but the work of Wazwaz [1] is of
the major interest in this study. The author investigated these
problems using Adomian decomposition method (ADM), varia-
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tional iteration method (VIM), power series method, homotopy
perturbation method (HPM) and the modified Adomian decom-
position method (MADM). Various collocation techniques were
also used by Refs. [2–6]. Another method to seek the numeri-
cal solution of Volterra IDE is the linear multistep method [7, 8],
Collocation approach was also used for solution of Fredholm-
Volterra fractional order of integro-differential equations [9],
Bernoulli matrix method was used to solve nonlinear Fredholm
integro-differential equations [10], differential transformmethod
[11], pseudospectral method [12], Mellin transformmethod [13],
wavelet-based method [14], Chebyshev computational approach
[15] and shifted Vieta-Lucas polynomials [16, 17].

Ref. [6] outlined an effective numerical technique for resolv-
ing Volterra IDEs utilizing power series as a basis function, and
obtained results forN = 4, 5 and 7 in the problem under consider-

https://nsps.org.ng
https://flayoophl.com
https://https://flayoophl.com/journals/index.php/pnspsc
https://flayoophl.com
https://nsps.org.ng
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


2 Otaide et al. / NSPS-KWASU-24 / Proceedings of the Nigerian Society of Physical Sciences 1 (2024) 84

ation. In the class of IDEs under consideration, he substituted the
power series approximation. The results obtained for a few nu-
merical examples demonstrate the effectiveness of the suggested
approach.
Motivated by the aforementioned studies, we are concerned

with the Volterra differential equation of the form:

Z n (α) = f (α) +
∫ α

0
K (α, t)Z (t) dt , (1)

subject to the initial condition

Z n (α) = an, n = 0, 1, 2 . . .N ,

where a ≤ τ ≤ b, Z n (α) is the unknown function, K (α, t) is the
Voltera integral kernel function and f (α) the known function.
In order to solve the Volterra integro-differential equation nu-

merically, the variational iteration method is paired with shifted
Vieta-Lucas polynomials to achieve a converging series solution.

2. THE STANDARD VARIATIONAL ITERATION METHOD
WITH VOLTERRA- INTEGRO DIFFERENTIAL EQUATION

The core notion of the procedure is illustrated by the Volterra-
integro differential equation:

Z n (α) = f (α) +
∫ α

0
K (α, t)Z (t) dt , (2)

where Z n (α) is the unknown function, K (α, t) is the Volterra
integral kernel function and f (α) the known function. According
to variational iteration algorithm, we can construct a correction
functional as follows:

Zm+1 (α) = Zm (α)

+

∫ α

0
λ (s)

(
dnZ
dsn
− f (s) −

∫ s

0
K (s, t)Z (t) dt

)
ds, (3)

where λ (t) is a Lagrange multiplier that can be best determined
using a VIA. Themth approximation is indicated by the subscript
m, and ŵm is regarded as a restricted variation, i.e., Ẑm = 0. The
relation (3) is called a correction functional. Due to the precise
identification of the Lagrange multiplier, both linear and non-
linear problems can be solved in a single iteration step. In this
method, wemust select the Lagrange multiplier λ (t) ideally, thus
it will be simple to construct each subsequent estimate of solu-
tion w by applying both the Lagrange multiplier and the Z0, and
the solution is given by:

lim
m−∞

Zm = Z .

The Lagrange multiplier, which can be described as follows, is
also crucial in determining how the problem will be solved.

(−1)m
1

(m − 1)!
(t − α)m−1 .

3. VIETA-LUCAS POLYNOMIALS
The Vieta-Lucas polynomials are orthogonal polynomials with
|α| < 2, defined as: VLn (α) = 2 cos (nθ) , where θ = cos−1

(
α
2

)
,

θ ∈ [0, π]. VLn (α) is also obtained through the following explicit
power series formula:

VLn (α) =
⌈ n2 ⌉∑
i=0

(−1)i
nΓ (n − i)

Γ (i + 1)Γ (n + 1 − 2i)
τn−2i,n={2,3,... },

where ⌈ n2 ⌉ is called the ceiling function.
The polynomial VLn (α) can be generated by the following it-

erative formula: VLn (α) = τVLn−1 (α)−VLn−2 (α) , n = 2, 3, . . . ,
with VL0 (α) = 2 and VL1 (α) = α. Hence, the first few Vieta-
Lucas polynomials are given as:

VL0 (α) = 2,VL1 (α) = α, VL2 (α) = α2 − 2, . . . . (4)

4. SHIFTED VIETA-LUCAS POLYNOMIALS
The shifted Vieta-Lucas polynomials of degree n on [0, 1] can be
derived from VLn (α) as follows:

VL∗n (α) = VLn (4α − 2) = VL2n

(
2
√
α
)
.

VLn∗ (α) is also obtained through the following explicit power
series formula:

VLn∗ (α) = 2n
n∑
i=0

(−1)i
4n−iΓ (2n − i)

Γ (i + 1)Γ (2n − 2i + 1)
τn−i,n={2,3,... }.

The polynomial VLn∗ (α) can be generated by the following iter-
ative formula: VL∗n+1 (α) = (4α − 2)VLn∗ (α) − VLn−1

∗ (α) , n =
1, 2, . . . , with VL0

∗ (α) = 2 and VL1
∗ (α) = 4α − 2. Hence, the

first few shifted Vieta-Lucas polynomials are given as:

VL∗0 (α) = 2, VL∗1 (α) = 4α − 2, VL∗2 (α) = 16α2 − 16α + 2.
(5)

5. VARIATIONAL ITERATION ALGORITHM FOR VOLTERA
INTEGRO-DIFFERENTIAL EQUATION MIXED WITH
SHIFTED VIETA-LUCAS POLYNOMIALS

Using equations (2) and (3), we assume an approximate solution
of the form:

Zm,N−1 (α) =
N−1∑
m=0

ξm,N−1VL∗m,N−1 (α),

where VL∗m,N−1 (α) are shifted Vieta-Lucas polynomials, δm,N−1
are constants to be determined, andN the degree of approximant.
Hence we obtain the following iterative method

Zm+1 (α) =
N−1∑
m=0

δm,N−1VL∗m,N−1 (α)

+

∫ α

0
λ (s)

dnZdsn
N−1∑
m=0

δm,N−1VL∗m,N−1τ


−f (s) −

∫ s

0
K (s, t)

N−1∑
m=0

δm,N−1VLm,N−1
∗ (t)

 dt
 ds.

(6)

6. CONVERGENCE OF THE METHOD
The Banach’s theorem concerning the variational iteration algo-
rithm’s convergence utilizing shifted Vieta-Lucas polynomials
will be discussed in this part. The method turns the given dif-
ferential equation into a sequence of function recurrences. It is
presumed that the given differential equation has a solution at the
limit of this sequence.
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THEOREM 1
Given that H:M → M is a nonlinear mapping andM be a Ba-
nach space, it is assumed that∥∥∥H [Z ] − H[Z ]

∥∥∥ ≤ ζ ∥∥∥Z − Z∥∥∥ ,∀Z ,Z ∈ M : ζ < 1. (7)

Then H has a unique fixed point. Hence, the sequence

Zm+1 = H [Zm] , (8)

with an arbitrary choice of Z0 ∈ M converges to the fixed point
of H and we have that∥∥∥Zp − Z1

∥∥∥ ≤ ∥∥∥Zp − Zp−1
∥∥∥ + · · · + ∥∥∥Zq+1 − Zq

∥∥∥∥∥∥∥H (
Zp−1

)
− H

(
Zp−2

)∥∥∥∥ + · · · + ∥∥∥∥H (
Zq

)
− H

(
Zq−1

)∥∥∥∥
≤ ζ

∥∥∥Zp−1 − Zp−2
∥∥∥ + · · · + ζ ∥∥∥Zq − Zq−1

∥∥∥
≤

(
ζp−2 + ζp−3 + · · · + ζq−1

)
∥Z1 − Z0∥ ≤

ζq−1

1 − ζ
∥Z1 − Z0∥ , (9)

where ζ < 1, with the assumption that p > q ≥ 1. This gives∥∥∥Zp − Zq∥∥∥ −→ 0 as p, q −→ ∞ and hence the sequence {Zp :
p = 1 . . .∞} is Cauchy. The sequence converges to a fixed point
since M is a Banach space and therefore convergent. According
to Theorem 1, we obtain that

H [Z ] = Zm,N−1 (α) +
∫ α

0
λ (t)

(
LZm (t) + NẐm (t) − g (t)

)
dt ,

(10)

H [Z ] =
N−1∑
m=0

δm,N−1VL∗m,N−1 (α) +
∫ α

0
λ (s)

(
dnZ
dsn

−f (s) −
∫ s

0
K (s, t)Z (t) dt

)
ds, (11)

and this is a sufficient condition for the convergence of the VIM
using shifted Vieta-Lucas polynomials, which is strictly a con-
traction onH. In the sequel, the sequence (8) converges to a fixed
point of H which is also a solution of equation (2).

7. NUMERICAL APPLICATIONS
In this section, we apply the proposedmethodology to three prob-
lems. Furthermore, numerical results show the accuracy and ef-
ficiency of the proposed approach.

Example 1: Consider the second order Volterra IDE [1]:

Z
′′

(α) = 1 + α +
∫ α

0
(α − t)Z (t) dt , (12)

with initial conditions

Z (0) = 1,Z ′(0) = 1. (13)

The exact solution for the problem is Z (α) = exp (α).
The initial value problem is corrected with the following func-

tional:

Zm+1 = Zm (α) +
∫ α

0
λ (s)

(
d2Z
ds2 − 1 − s −

∫ s

0
(s − t) .Z (t) dt

)
ds,

where λ (t) = (t − α) is the Lagrange multiplier.

Table 1. Comparison of numerical findings of example 1.
α Exact solution Approximate

solution
Absolute error
by the proposed
method

0.0 1.000000000 1.000000000 0.000000E-00
0.2 1.221402758 1.221402667 9.100000E-08
0.4 1.491824698 1.491818667 6.031000E-07
0.6 1.822118800 1.822048000 7.080000E-06
0.8 2.225540928 2.225130667 4.102610E-05
1.0 2.718281828 2.716666667 1.615161E-04

Figure 1. Comparison of exact and approximate solutions of example 1.

Using the VIM coupled with the SVLPs, we assume an ap-
proximate solution of this type.

Zm,1 (α) =
1∑

m=0

δm,1VL∗m,1 (α).

Consequently, we obtain the iterative formula as follows:

Zm+1,N−1 =

1∑
m=0

δm,1V ∗Lm,1 (α) +
∫ α

0
λ (s)

 d2

ds2

 1∑
m=0

δm,1V ∗Lm,1 (s)

 − 1

−s −
∫ s

0
(s − t)

 1∑
m=0

δm,1V ∗Lm,1 (t)

 dt
 ds,

Zm+1,N−1 (α) = δ0,1VL∗0,1 (α) + δ1,1VL∗1,1 (α)

+

∫ α

0
(s − α)

(
d2

dt2
(
δ0,1VL∗0,1 (s) + δ1,1VL∗1,1 (s)

)
− 1 − s

−

∫ s

0
(s − t)

(
δ0,1VL∗0,1 (t) + δ1,1VL∗1,1 (t)

)
dt

)
ds.

The initial conditions in equation (13) were used to determine
the values of the unknown constants δ0,1 = 0.750000000, δ1,1 =
0.25000000. Therefore, the series solution is provided as

Z (α) = 1 + α +
1
2
α2 +

1
6
α3 +

1
24
α4 +

1
120
α5 + (O)6.

The numerical results are shown in Table 1 and Figure 1.
Example 2 Consider the third order Volterra IDE [1]:

Z
′′′

(α) = −1 + α −
∫ α

0
(α − t)Z (t) dt , (14)
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Table 2. Comparison of numerical findings of example 2.
α Exact solution Approximate

solution
Absolute error
by the proposed
method

0.0 1.0000000000 1.0000000000 0.0000000E-00
0.2 0.8187307531 0.8187307530 1.0000000E-10
0.4 0.6703200460 0.6703200305 1.5500000E-08
0.6 0.5488116361 0.5488112457 3.9040000E-07
0.8 0.4493289641 0.4493251454 3.8187000E-07
1.0 0.3678794412 0.3678571428 2.2298400E-06

with initial conditions

Z (0) = 1,Z ′ (0) = −1,Z
′′

(0) = 1. (15)

The exact solution for the problem is Z (α) = exp (−α).
The initial value problem is corrected with the following func-

tional:

Zm+1 = Zm (α)+
∫ α

0
λ (s)

(
d3Z
ds3 + 1 − s −

∫ s

0
(s − t) .Z (t) dt

)
ds,

where λ (t) = (−1)3(t−α)2

3! is the Lagrange multiplier.
Using the VIM and the SVLPs, we assume an approximate

solution of this type.

Zm,2 (α) =
2∑

m=0

δm,2VL∗m,2 (α) .

Consequently, we obtain the iterative formula as follows:

Zm+1,N−1 =

2∑
m=0

δm,2VL∗m,2 (α)

+

∫ α

0
λ (t)

 d3

ds3

 2∑
m=0

δm,2VL∗m,2 (s)

 + 1 − s

+

∫ s

0
(s − t) .

 2∑
m=0

δm,2VL∗m,2 (t)

 dt
 ds,

Zm+1,N−1 (α) = δ0,2VL∗0,2 (α) + δ1,2VL∗1,2 (α) + δ2,2VL∗2,2 (α)

+

∫ α

0

(−1)3(s − α)2

3!

(
d3

ds3

(
δ0,2V ∗L 0,2(s) + δ1,2V ∗L 1,2(s)

+δ2,2VL∗2,2 (s)
)
+ 1 − s +

∫ s

0
(s − t)

(
δ0,2VL∗0,2 (t)

+δ1,2VL∗1,2 (t) + δ2,2VL∗2,2 (t)
)
dt

)
ds.

The initial conditions in equation (15) were used to determine
the values of the unknown constants. δ0,2 = 0.3437500000,
δ1,2 = −0.1250000000, δ2,2 = 0.0312500000. Therefore, the
series solution is provided as

Z (α) = 1 − α +
1
2
α2 −

1
6
α3 +

1
24
α4 −

1
120
α5 + (O)6.

The numerical results are shown in Table 2 and Figure 2.

Figure 2. Comparison of exact and approximate solutions of example 2.

Example 3: Consider the fourth order Volterra IDE [1]:

Z (iv) (α) = −1 + α −
∫ α

0
(α − t)Z (t) dt , (16)

with initial conditions

Z (0) = −1, Z ′ (0) = 1, Z
′′

(0) = 1, Z
′′′

(0) = −1. (17)

The exact solution for the problem is Z (α) = sinα − cosα.
The initial value problem is corrected with the following func-

tional:

Zm+1 = Zm (α) +
∫ α

0
λ (s)

(
d4w
ds4 + 1 − s +

∫ s

0
(s − t)w (t) dt

)
ds,

where λ (t) = (−1)4(t−α)3

4! is the Lagrange multiplier.
Using the SVLPs and the VIM, we assume an approximate

solution of the type:

Zm,3 (α) =
3∑

m=0

δm,3VL∗m,3 (α) .

Consequently, we obtain the iterative formula as follows:

Zm+1,N−1 (α) =
3∑

m=0

δm,3VL∗m,3 (α)

+

∫ α

0
λ (s)

 d4

ds4

 3∑
m=0

δm,3VL∗m,3 (s)

 + 1 − s

+

∫ s

0
(s − t)

 3∑
m=0

δm,3VL∗m,3 (t)

 dt
 ds,

Zm+1,N−1 (α) = δ0,3VL∗0,3 (α) + δ1,3VL∗1,3 (α) + δ2,3VL∗2,3 (α)

+ δ3,3VL∗3,3 (α) +
∫ α

0

(−1)4(s − α)3

4!

(
d4

ds4

(
δ0,3VL∗0,3 (s)

+δ1,3VL∗1,3 (s) + δ2,3VL∗2,3 (s) + δ3,3VL∗3,3 (s)
)
+ 1 − s

+

∫ s

0
(s − t)

(
δ0,3VL∗0,3 (t) + δ1,3VL∗1,3(t) + δ2,3V ∗L 2,3(t)

+δ3,3V ∗L 3,3(t)
)
dt

)
ds.



Otaide et al. / NSPS-KWASU-24 / Proceedings of the Nigerian Society of Physical Sciences 1 (2024) 84 5

Table 3. Comparison of numerical findings of example 3.
α Exact solution Approximate

solution
Absolute error
by the proposed
method

0.0 -
1.00000000000

-
0.9999999997

3.000000E-10

0.2 -
0.7813972470

-
0.7813972521

5.100000E-09

0.4 -
0.5316426517

-
0.5316433763

7.246000E-07

0.6 -
0.2606931415

-
0.2607060843

1.294280E-05

0.8 0.0206493816 0.0205486583 1.007233E-04
1.0 0.3011686789 0.3006723993 4.962796E-04

Figure 3. Comparison of exact and approximate solutions of example 3.

The initial conditions in equation (17) were used to determine
the values of the unknown constants. δ0,3 = −0.1822916667,
δ1,3 = 0.3359375000, δ2,3 = 0.0156250000, δ3,3 =

−0.0022604166667. Therefore, the series solution is provided
as

Z (α) = −0.9999999997 + α +
1
2
α2 −

1
6
α3 −

1
24
α4

+
1

120
α5 + (O)6.

The numerical results are shown in Table 3 and Figure 3.

8. CONCLUSION
This study explores and successfully applies the VIM with
SVLPs to produce numerical solutions for Volterra IDEs. The
technique for solving the problem consists of SVLPs and a vari-
ational iteration algorithm. For physical problems, this technique
yields series solutions that are more realistic and converge quite
quickly. Above all, the numerical results demonstrated that the
current methodology is an effective mathematical strategy for
solving the class of problems that are being studied. This method
can be applied to other forms of equations with wider applica-
tions. The work can also find application in quantum physics.
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