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A B S T R A C T

The application of block methods in the study of dynamical system is one area which needs more research. Therefore, this work
presents block methods and its application to solve some problems in solid and fluid mechanics. The method was developed directly
using the approaches of collocation and interpolation, and using power series polynomial as a trial solution. First, the system of linear
equations is solved to obtain the unknown coefficients. The coefficients gotten are then substituted into the approximate solution
to obtain continuous scheme. The continuous scheme, its first, second and third derivatives are evaluated at all the grid points to
generate the block methods. The derived methods were applied to solve fourth-order boundary value problems of ordinary differential
equations arising from beams and chemical problems. The results demonstrate the reliability and efficiency of the proposed method.
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1. INTRODUCTION

Generally, fourth-order initial and boundary value problems fre-
quently arise in fields like sciences and engineering, such asmod-
elling viscoelastic and inelastic flows, deformation of beams,
plate deflection theory and many other applications of engineer-
ing and applied mathematics. However, it is commonly known
that several fourth ODEs do not have theoretical solutions.

Many researchers have developed methods for the direct nu-
merical integration of boundary value problems (BVPs) fourth-
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order ordinary differential equations of the form

yiv(t) = (t , y, y′, y′′, y′′′), (1)

with conditions

y(t) = α1, y′(t) = α2, y′′(t) = α3, y′′′(t) = α4. (2)

According to Manni et al. [1], boundary value problems
could be solved by reducing them to first-order boundary value
problems with twice dimensions. Notable scholars such as
Brugnano & Trigiante [2], Amodio & Sgura [3], and Asche et
al. [4], among others, have transformed fourth-order bound-
ary value problems into a first-order boundary value problems
with doubled dimension in order to be able to get numerical
solutions. However, this strategy is costly because several re-
searchers found that converting higher-order ODEs into first-
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order ODE systems will increase the equation count. Conse-
quently, more function evaluations must be calculated, requiring
more computational effort and longer time. Many researchers
have suggested a direct numerical approach to more accurate re-
sults with less calculation time.
Many scholars have proposed direct methods to solve higher-

order boundary value problems of ODE’s, researcher like Quang
et al. [5] who proposed a new fixed-point approach for a fully
nonlinear fourth-order problem. Their problemmodels the bend-
ing equilibrium of a beam on an elastic foundation whose two
ends are supported, and their iterative method converges. Zhang
et al. [6] proposed a numerical solution to the Euler-Bernoulli
beam equation using the barycentric Lagrange interpolation col-
location method.
Numerical approaches for the solution of fourth-order bound-

ary value problems are numerous in the literature. Some of
those methods proposed for obtaining the approximate solution
of fourth-order BVPs include but are not limited to Variational It-
eration Method (VIM) by Noor et al. [7], Quintic Spline method
by Siddiqi & Akram[8], Spline-based methods by Kasi et al. [9],
the Least Value Method by Yao & Cui, [10]. Other approaches
are based on collocation methods, Variation of Parameter meth-
ods, Adomian Decomposition methods, and Differential Trans-
form Methods, to mention a few.
According to Ramos & Rufai [11], there are mainly three

different types of approximation methods for solving boundary
value problems of ODEs: the shooting method, finite-difference
methods, and the class of methods based on approximating the
solution by a linear combination of trial functions (of which col-
location methods, Galerkin method, and Rayleigh-Ritz method
are the most typical examples). The shooting method transforms
the boundary-value ODE into a system of First-order ODEs,
which a suitable initial-value solver must solve. The finite-
difference approach constructs a finite difference approximation
of the exact ODE at selected points on a discrete grid, including
the boundary conditions. This way, a system of coupled finite
difference equations results must be solved simultaneously, thus
obtaining the approximate solution at the grid points. Prominent
researchers like Chen et al. [12], Cheng & Zhong [13], Lom-
tatidze et al. [14] and Thompson et al. [15] have applied finite
difference methods to solve fourth-order boundary value prob-
lems together with selected boundary conditions. As seen in
much literature, these methods’ drawbacks are that they require
significant computational costs to obtain high accuracy.
According to DangQuang [16],there are manymethods for the

numerical solution of two-point nonlinear BVPs for fourth-order
equations, which he said can be grouped into three. The first
type includes methods for constructing discrete systems corre-
sponding to BVPs; researchers such as Hajji & Al-Khaled [17],
Mohanty [18], Siddiqi & Akram [8] and Srivastava et al. [19]
studied the convergence of the discrete systems without any anal-
ysis of errors arising in solving the discrete systems. The second
type of method is related to the methods of construction of itera-
tive methods on the continuous level without attention to how to
realize continuous problems at each iteration and errors arising
at each iteration; Agarwal & Chow,[20], Azarnavid et al. [21],
[22], Dang et al. [23] and Dang & Dang,[24] used this approach.
The third type includes analytical methods such as the Ado-

mian decomposition method as found in Singh et al. [25], the
variational iteration method by Noor et al. [7], the reproducing
kernel method by Geng [26], when the solution is sought in se-
ries form. Spectral methods also belong to the third type since
the exact solution of the problems is expressed in series represen-
tation by basis functions. The total error of the obtained approx-
imate numerical solution has not been addressed in all the types
of methods. The problem of total error in the numerical solution
of nonlinear BVPs must be investigated because the total error
gives helpful information for balancing discretization error and
error of iterative process.

2. DERIVATION OF THE BLOCK METHOD
In this research, we consider the numerical solution of general
fourth-order boundary value problems (BVPs) of ordinary dif-
ferential equations of the form (1) with conditions (2).
Assume that the theoretical solution to (1) is approximated

here by a polynomial of the form:

y(t) = p(t) =
k∑
r=0

ar tr , (3)

where aj ∈ R are unknown coefficients to be determined and t is
continuously differentiable.
The successive derivatives of (3) are obtained to be

y′(t) = p
′

(t)
k∑
r=1

D1,rar tr−1,

y′′(t) = p
′′

(t)
k∑
r=2

D2,rar tr−2,

y′′′(t) = p
′′′

(t)
k∑
r=3

D3,rar tr−3,

y(4)(t) = piv(t)
k∑
r=4

D4,rar tr−4,

y(5)(t) = pv(t)
k∑
r=4

jD5,rar t j−5, (4)

where
j−1∏
s=0

(r − s), j = 1, 2, . . . , 5,

using the approximations in (3) and (4). This leads to a system
of linear equations that can be expressed in matrix form as

X =



x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

. . . . . .

. . . . . .

. . . . . .

xn1 xn2 . . . xnn
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a2

.

.
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an



=



b0

b1

b2

.

.

.

bn



. (5)
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We proceed to solve (5) using Gaussian elimination with the
aid of CAS Mathematica to get the parameters a′js, these val-
ues are subtituted back into (3) which after some simplifications
gives a continuous scheme representation of the approximating
polynomial in the form

A0(xn)Ym = A(i)
0 (xn)Ym−i + hA1

(i)(xn)Y ′m−i + h
2A2

(i)(xn)Y ′′m−i

+h3A3
(i)(xn)Y ′′′m−i + h

4
k∑
i=0

B(i)(xn)Fm−i

+h5
k∑
i=0

C (i)(xn)F ′m−i. (6)

The continuous scheme shall be evaluated to obtain the block
methods. Following the above procedure as stated above from
equation (3) to (6), the block methods below are derived.

2.1. THE ONE-STEP BLOCK METHOD

yn+1 = yn + hy′n +
1
2
h2y′′n +

1
6
h3y′′′n

+h4
(
fn
28
+
fn+1

168

)
+ h5

(
f ′n

252
−
f ′n+1

630

)
. (7)

y′n+1 = y′ + hy′′ +
1
2
h2y′′′ + h3

(
2fn
15
+
fn+1

30

)
+h4

(
f ′n
60
−
f ′n+1

120

)
. (8)

y′′n+1 = y′′n + hy
′′′ + h2

(
21fn + 9fn+1

60

)
+h3

(
f ′n − 2f ′n+1

60

)
. (9)

y′′′n+1 = y′′′n + h
(

6fn + 6fn+1

12

)
+ h2

(
f ′n − 6f ′n+1

12

)
. (10)

2.2. THE TWO-STEP BLOCK METHOD

yn+1 = yn + hy′n +
1
2
h2y′′n +

1
6
h3y′′′n

+h4
(

67fn
2016

+
fn+1

144
+
fn+2

672

)
+h5

(
37f ′n

12096
−

4f ′n+1

945
−

5f ′n+2

12096

)
. (11)

yn+2 = yn + hy′n +
1
2
h2y′′n +

1
6
h3y′′′n

+h4
(

8fn
21
+

16fn+1

63
+

2f ′n+2

63

)
+h5

(
8f ′n
189
−

16f ′n+1

189
−

8fn+2

945

)
. (12)

y′n+1 = y′n + hy
′′
n +

1
2
h2y′′′n

+h3
(

817fn + 256fn+1 + 47fn+2

6720

)
+h4

(
83f ′n − 140f ′n+1 − 13f ′n+2

6720

)
. (13)

y′n+2 = y′n + 2hy′′n + 2h2y′′′n

+h3
(

68fn + 64fn+1 + 8fn+2

105

)
+h4

(
8f ′n − 16f ′n+1 − 2f ′n+2

105

)
. (14)

y′′n+1 = y′′n + hy
′′′
n

+h2
(

520fn + 280fn+1 + 40fn+2

1680

)
+h3

(
59f ′n − 128f ′n+1 − 11f ′n+2

1680

)
. (15)

y′′n+2 = y′′n + 2hy′′′n

+h2
(

79fn + 112fn+1 + 19fn+2

105

)
+h3

(
10f ′n − 16f ′n+1 − 4f ′n+2

10

)
. (16)

y′′′n+1 = y′′′n

+h
(

101fn + 128fn+1 + 11fn+2

240

)
+h2

(
13f ′n − 40f ′n+1 − 3f ′n+2

240

)
. (17)

y′′′n+2 = y′′′n + h
(

7fn + 16fn+1 + 7fn+2

15

)
+h2

(
f ′n − f

′
n+2

15

)
. (18)

3. ANALYSIS OF THE METHOD
3.1. LOCAL TRUNCATION ERROR AND ORDER
Following the procedure stated by Fatunla [27] and Lambert [28],
it is possible to show that the block methods derived are of 2k+2.
Thus,we have the following Lemma.

3.1.1. Lemma

1. The order of the block method for k = 1, 2, 3 · · · is 2k + 2.

3.1.2. Proof

The general form of the block methods is

y(x) =
3∑
i=0

αiyin(xn)h
i + h4

k∑
i=0

βi(xn)fn+i

+ h5
k∑
i=0

βi(xn)f ′n+i, (19)

assuming,

yn+v ≈ y(xn + vh), fn+j ≡ (xn + jh, y(tn + jh)) ,

f ′n+v =
df (t , y(t))

dt
|x=xn+vy=yn+v

and y(xn) is an arbitrary function continuously differentiable on
[a, b].
We define the local truncation error (LTE) associated with the
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Table 1. Comparison of methods for problem 1.
h Exact E3SBM Modebei et al. [30]
0.1 0.01981000000000000 3.469446951953614E-18 0
0.2 0.07712000000000000 1.3877787807814457E-17 1.39E-17
0.3 0.16623000000000000 0 2.78E-17
0.4 0.27904000000000000 5.551115123125783E-17 0
0.5 0.40625000000000000 5.551115123125783E-17 0
0.6 0.53856000000000000 0 0
0.7 0.66787000000000000 1.1102230246251565E-16 0
0.8 0.78848000000000000 2.220446049250313E-16 1.11E-16
0.9 0.89829000000000000 1.1102230246251565E-16 1.11E-16
1.0 1.00000000000000000 0 0

family of the block as the linear operator L[y(x); h] such that

L[y(x); h] = y(xn + ih) −
(
α1hy′(x) − α2h2y′′(x)

−α3h3y′′′(x) − h4
k∑
j=0

βj(x)fn+j − h5
k∑
j=0

γjf ′n+j

)
. (20)

Expanding the right hand side (RHS) in Taylor series about
point t , the order of the method is (k + 1) + (k + 1), i.e., p =
(k + 1) + (k + 1) = 2k + 2.
The Local Truncation Error (L.T.E) is

L.T .E .(xn) = −y(x) + yn + α1hy′(x) + α2h2y′′(x)

+α3h3y′′′(x) + h4
k∑
j=0

βj(x)fn+j

+h5
k∑
j=0

γjf ′n+j

≤ Cp+1hp+1yp+1
n (x) + O

(
h(p+1)

)
= C2k+3h2k+3y2k+3

n (x) + O
(
h(2k+4)

)
. (21)

The order forK = 1, 2, 3, are [4, 4, 4, 4]T , [6, 6, 6, 6, 6, 6, 6, 6]T

and [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]T , respectively.
Local truncation errors are

Cp+4 =

[
1

24192
,

1
5040

,
1

1440
,

1
720

]T
,

Cp+4 =

[
1

259200
,

1
14175

,
1

56700
,

2
14175

,
1

17280
,

1
4725

,
1

9450
,

1
4725

]T
,

and

Cp+4 =

[
3359

6706022400
,

221
26195400

,
1053

27596800
,

89
39916800

,

1
62370

,
81

1724800
,

359
50803200

,
17

793800
,

27
627200

,

313
25401600

,
13

793800
,

9
313600

]T
,

respectively.

Table 2. Comparison of methods for problem 2.
h Exact E2SBM Dang Quang [32]
30 1.0833333333333333 1.1102230246251565E-15 0.0065
50 1.0833333333333333 2.6645352591003757E-15 0.0021
100 1.0833333333333333 2.4424906541753444E-15 3.9522E-04
200 1.0833333333333333 4.440892098500626E-16 3.9522E-04
500 1.0833333333333333 9.992007221626409E-15 3.9522E-04

Table 3. Comparison of methods for problem 3.
h y − exact E3SBM Jator [31]
0 0 0 0

0.25 0.009122721354166667 8.153200337090993E-17 3.46945E-17
0.5 0.031510416666666666 1.3877787807814457E-17 2.28983E -16
0.75 0.0605712890625 1.3183898417423734E-16 3.67761E-16
1.0 0.09166666666666666 2.0816681711721685E-16 5.13478E-16

3.2. ZERO STABILITY OF THE METHODS
The general form of block method is given as :

A(0)Ym = A(r)Ym−1 + hµ[B(i)Fm + B(0)Fm−1. (22)

A method is said to be zero stable, if the roots of

det[λA(0) − A(r)] = 0. (23)

First characteristic polynomial satisfies |λ| ≤ 1 and for the roots
with |λ| = 1 , the multiplicity must not exceed the order of the
differential equations according to Fatunla [29].
This kind of stability issue concerned with the behaviour of the

different system when h→ 0. For h→ 0, the system of equations
can be written as:

A(0)Ym = A(r)Ym−1, (24)

where A(0) is identity matrix.
The roots of the methods for k = 1, 2, 3 are as follows

λ1 = λ2 = λ3 = λ4 = 1
λ1 = λ2 = λ3 = λ4 = 0, λ5 = λ6 = λ7 = λ8 = 1
λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = λ8 = 0, λ9 = λ10 = λ11 =

λ12 = 1,
respectively.

4. NUMERICAL APPLICATION
In this section, we have tested the performance of our method on
some initial and boundary value problems including linear, non-
linear and system of equation. For each example, we find the
absolute errors of the approximate solution and compare them
with various existing methods in the literature. We note that the
accuracy of our method is measured by the small error values
obtained.

ACRONYMS
1SBM - One-Step Block Method
2SBM - Two-Step Block Method
3SBM - Three-Step Block Method
E1SBM - Error in One-Step Block Method
E2SBM - Error in Two-Step Block Method
E3SBM - Error in Three-Step Block Method
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Table 4. Comparison of methods for problem 4.
h E1SBM E2SBM E3SBM

0.31415 5.225942104137085E-07 3.-10 4.597767479241899E-13
0.62831 1.0739644691806077E-06 3.823533729213624E-10 9.93960122541715E-13
0.94247 1.0423257126336571E-06 9.285122150315406E-11 1.0277282497250795E-12
1.25663 5.933619030536533E-07 6.617654341178891E-11 6.183465198206228E-13
1.57079 1.1284451988122402E-18 2.7394099603923085E-19 8.490722256154154E-19
1.88495 5.933619030545206E-07 6.617654167706544E-11 6.183439177354089E-13
2.19911 1.0423257126319224E-06 9.285122497260101E-11 1.0277299844485555E-13
2.51327 1.0739644691806077E-06 3.823533729213624E-10 9.93956653094763E-13
2.82743 5.225942104119738E-07 3.5321875892918575E-10 4.597763142433209E-13
3.14159 0 0 0

Problem 1
Consider the nonlinear boundary value problem

yiv = y2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x − 48,

0 < x < 1, y(0) = 0, y(1) = 1; y′(0) = 0, y′(1) = 1, h = 0.1

Exact solution is

y(x) = x5 − 2x4 + 2x2.

Problem 2

y′v = −18 +
1
5
y2 −

1
5

(
5
6
+ x2 +

3
4
x4

)2

, 0 < x < 1

y(0) =
5
6
, y′(0) = 0, y′(1) = 0; y′′(0) = 0; h = 0.1

Exact solution is

y(x) =
5
6
− x3 +

3
4
x4.

Table 5. Comparison of methods for problem 5.
h E3SBM Ullah et .al. [33] Adeyeye & Omar[34]
0.1 5.551115123125783E-17 7.58785506649317E-10 4.032885E-14
0.2 2.220446049250313E-16 1.39478356642186E-09 2.363387E-13
0.3 3.3306690738754696E-16 1.80948145356296E-09 6.848411E-13
0.4 3.3306690738754696E-16 1.94815263920844E-09 1.489975E-12
0.5 0 1.81075676675135E-09 2.768896E-12
0.6 0 1.45204859247627E-09 4.502620E-12
0.7 2.220446049250313E-16 9.70818092582703E-10 6.029954E-12
0.8 3.3306690738754696E-16 4.90335771985428E-10 6.408873E-12
0.9 7.771561172376096E-16 1.33847599670389E-10 4.708123E-12
1.0 0 2.22044604925031E-16 0

Application to dynamical problems
Problem 3
Considering the given linear BVP that involves a cantilever beam
of length L with both ends fixed, distributed load, k(x), modulus
of elasticity E and moment of inertial I . The problem is solved
for k(x) = x,L = 1, and EI = 1

EI
d4y
dx4 (x) = K (x), y(0) = 0, y′(0) = 0, y′′(L) = 0 y′′′(L) = 0.

Exact solution is

y(x) =
1

120

(
20x2 − 10x3 + x5

)
.

Problem 4:
Consider the problem of bending a rectangular clamped beam of
length π resting on an elastic foundation. The vertical deflection
ω of the beam satisfies the system:

d4ω

dx4 + 64ω = sin(2x), 0 < x < π,

ω(0) = ω′(0) = ω(π) = ω′(π) = 0; h = 0.1.
Exact solution is

ω(x) =
−(−1 + e2x)(−e2x + e2x) sin(2x)

80e2x(1 + e2π)
.

Problem 5
Investigating magnetohydrodynamics (MHD) squeezing flow
of Newtonian fluid between two parallel plates passing through
porous medium, the governing partial differential equations
after some simplification reduce to single PDE as follows:

ρ

[
∂ψ

∂r
∂

∂z

(
η2ψ

r2

)
−
∂ψ

∂z
∂

∂r

(
η2ψ

r2

)]
= −

µ

r
η4ψ +

µ

k
η2ψ +

ηB0
2

r
∂2ψ

∂z2 ,

Here, η =
∂2

∂r2 −
1
r

(
∂

∂r

)
+
∂2

∂z2 . If the moving plates are separated

by distance 2d , then
ur = 0, uz = −v, at z = d , uz = 0
∂ur
∂z
= 0 at z = 0.

Using the transformation ψ(r , z) = r2f (z), it reduces the PDE to
an ODE of the form:

d4

dz4 f (z) +
2ρ
µ
f (z)

d3

dz3 f (z) −
1
k
d2

dz2 f (z) −
σB0

2

µ

d2

dz2 f (z) = 0,

with the conditions
d2

dz2 f (0) = 0, f (0) = 0,
d
dz
f (d) = 0, f (d) = −

u
2
.

Using non-dimensional parameters(u
2

)
f ∗ = f , dz∗ = z,

(
u
µ

)
Rmp = ρd , mh =

σdB0

µ
,

and mp =
h
k
and omitting the ∗, we have

d4

dz4 f (z) + Rmpf (z)
d3

dz3 f (z) − mp
d2

dz2 f (z) − mh
d2

dz2 f (z) = 0,

d2

dz2 f (0) = 0, f (0) = 0,
d
dz
f (1) = 0, f (1) = 0,

where Rmp is Reynold and mh,mp are Hartmann numbers.
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5. CONCLUSION
A family of block methods of (2k+2) order has been derived and
analysed in this work for the direct approximation of fourth-order
boundary value problems in ordinary differential equations in dy-
namical systems. The method is simple in terms of derivation
and implementation to solve a variety of boundary value prob-
lems with different boundary conditions. The theoretical analy-
sis of the methods shows that it is convergence and its application
to some numerical examples established the efficiency and high
accuracy of the proposed family of method which make it com-
petitive with other methods in the literature.
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