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A B S T R A C T

Gold mineral prospectivity mapping is crucial for identifying potential gold-bearing zones and supporting exploration efforts through
advanced data analytics. However, many existing models tend to overestimate high-prospectivity areas, introducing biases toward
known deposits and limiting their effectiveness in discovering new mineralized zones. To enhance exploration accuracy, data-driven
approaches that enhance model interpretability and minimize predictive bias are essential. In this study, we applied Support Vector
Machines (SVM) and Classification and Regression Trees (CART) to generate gold mineralization maps for Yagba West, utilizing an
integrated dataset comprising SRTM DEM, Landsat 8 imagery, geological maps, and aeromagnetic data. The SVM model mapped a
249.58 km² gold-prospective area with 96% validation accuracy, while the CART model identified 132.13 km² with 97% accuracy.
Both models exhibit strong classification performance, confirming their effectiveness for mineral exploration. This study further
revealed that gold occurrences in the study area are predominantly concentrated in quartzite, quartz schist, gabbro, and quartz gabbro
formations, primarily along NNE–SSW and NW–SE structural orientations, emphasizing the influence of structural controls on
mineralization. These findings underscore the potential of machine learning in enhancing gold prospectivity mapping and optimizing
exploration strategies in structurally controlled gold-bearing terrains.
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1. INTRODUCTION
Gold exploration is a critical component of economic develop-
ment, necessitating efficient and precise methods for mineral
prospectivity mapping. Traditional exploration techniques, such
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as geological field surveys, geochemical sampling, and geophys-
ical analysis, are time-consuming, costly, and spatially limited,
particularly in complex terrains. Recent advancements in re-
mote sensing, aeromagnetic surveys, and machine learning (ML)
have provided a viable alternative, enabling automated and high-
accuracy predictions of mineralization zones [1]. However, ML
models face challenges such as overfitting and interpretability,
which must be addressed to ensure reliable predictions.
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Overfitting occurs when an ML model learns patterns from
the training data too specifically, resulting in poor generaliza-
tion to unseen data. To mitigate this, we applied cross-validation
techniques and optimized model hyperparameters to prevent ex-
cessive complexity. Additionally, we ensured an adequate bal-
ance between mineralized and non-mineralized training samples
to enhance generalization. Model interpretability is another sig-
nificant challenge in mineral prospectivity mapping, particularly
when complex models like deep learning are used [2, 3]. In this
study, we selected Support VectorMachines (SVM) and Classifi-
cation and Regression Trees (CART) due to their interpretability
and ability to provide meaningful insights into the relationship
between geological, geophysical, spectral attributes and gold
mineralization.
Among the various ML approaches, SVM and CART have

emerged as powerful predictive models for mineral exploration.
SVM, a supervised learning algorithm, is widely recognized for
its ability to classify high-dimensional geological datasets by
identifying optimal hyperplanes that separate different mineral-
ization zones [4]. Meanwhile, CART is a decision-tree-based
technique that efficiently handles complex geological and geo-
physical data by partitioning datasets into homogenous groups
for better mineralization predictions [5]. These models have
demonstrated superior accuracy and efficiency when applied to
integrated datasets [6, 7].
Despite the advantages of SVM and CART, their performance

can be influenced by the quality and quantity of training data.
While SVM excels in handling high-dimensional data, it may
struggle with large datasets due to computational complexity [8].
Conversely, CART provides an intuitive decision-making pro-
cess but is prone to overfitting if not properly pruned [9]. These
limitations highlight the need for complementary validation tech-
niques, such as independent test datasets or ensemble learning,
to improve robustness and ensure reliable prospectivity mapping
results.
Remote sensing, geology map, and aeromagnetic datasets pro-

vide critical insights into subsurface geology, structural controls,
and hydrothermal alteration patterns associated with gold miner-
alization. Landsat-based spectral analysis facilitates the identifi-
cation of hydrothermal alteration zones and lithological units that
indicate potential gold deposits [8, 10]. Aeromagnetic data aids
in detecting deep-seated structures such as faults and shear zones,
which are essential in mineralized systems [11–13]. The fu-
sion of these datasets with machine learning algorithms enhances
mineral prospectivity mapping by improving the identification
of mineralized zones [4, 14]. Several studies have validated the
effectiveness of ML-based approaches in mineral prospectivity
mapping. For instance, Ref. [15] applied convolutional neural
networks (CNNs) for 3D mineral prospectivity modeling in the
Dayingezhuang gold deposit, China, demonstrating CNNs' abil-
ity to autonomously extract mineralization-related features from
geological models. Similarly, Ref. [13] integrated aeromagnetic
and radiometric data for gold prospectivity mapping in the Ilesha
Schist Belt, Nigeria, revealing that potassium deviation (KD) and
first vertical derivative (FVD) maps effectively delineate struc-
tural lineaments associated with ore deposits.
Ref. [4] proposed a multimodal deep learning framework

combining CNNs and Multilayer Perceptrons (MLPs) with

Canonical Correlation Analysis (CCA) to enhance 3D mineral
prospectivity predictions. This method significantly improved
accuracy by integrating geological structures and hydrothermal
fluid properties. However, their approach required extensive la-
beled training data, limiting its practical application. Ref. [5]
addressed the issue of ML model interpretability by integrat-
ing CNNs with Explainable Artificial Intelligence (XAI), us-
ing SHAP (Shapley Additive Explanations) to identify the most
influential variables in mineral prospectivity modeling. Their
study highlighted key indicators of gold mineralization, such as
antimony, clay, lead, arsenic, and magnetic anomalies, achieving
90% prediction accuracy. Despite these advancements, most ML
models for mineral prospectivity mapping (including CNNs and
RF, require large labeled datasets and computationally intensive
processes [6, 16]. Meanwhile, SVM and CART provide compu-
tationally efficient, interpretable, and scalable alternatives [17].
Gold mineralization is closely linked to hydrothermal pro-

cesses, structural deformation, and alteration minerals [11], all
of which can be effectively detected using integrated techniques.
However, traditional exploration approaches, such as geochem-
ical sampling and geophysical surveys, are labor-intensive and
costly [18]. Remote sensing-based terrain and spectral indices
offer a cost-effective alternative for scalable and extensive min-
eral prospectivity mapping [19]. Gold-bearing formations are of-
ten associated with iron oxide deposits, hydrothermal zones, and
clay-rich environments, while terrain features such as slope vari-
ations, curvature, and roughness highlight structurally controlled
deposits. This study integrates Landsat 9 and SRTMDEM-based
terrain and spectral indices to enhance the delineation of gold
mineralization zones.
The primary objective of this study is to develop an advanced

machine learning-based framework for gold mineralization map-
ping by integrating remote sensing, geological, and geophysical
data. Specifically, the study applies Support Vector Machine
(SVM) and Classification and Regression Tree (CART) mod-
els to classify potential gold-bearing zones in Yagba West, Kogi
State. It further integrates terrain indices, including slope, rough-
ness, curvature, Topographic Wetness Index (TWI), aspect, and
Digital ElevationModel (DEM), along with spectral indices such
as iron oxide ratio, hydrothermal alteration, and clay-carbonate
signatures derived from remote sensing data to improve predic-
tive accuracy. Machine learning-based prospectivity maps will
be superimposed on geological formations to assess their cor-
relation with known mineralized zones, structural deformation,
and lithological features. Furthermore, this research develops
an ensemble learning framework that optimally combines SVM
and CART outputs to enhance mineral prospectivity classifica-
tion. The classification accuracy of the proposed machine learn-
ing models will be validated using confusion matrix assessment
to ensure reliability in gold exploration applications.
Gold exploration relies on field surveys, geochemical sam-

pling, and geophysical prospecting, which are costly, time-
consuming, and geographically constrained. Despite advances
in remote sensing and aeromagnetic surveys, accurately delineat-
ing gold-prospective zones remains a challenge, particularly in
geologically complex terrains like Yagba West, Kogi State. The
heterogeneous nature of gold mineralization, controlled by struc-
tural deformation, hydrothermal alteration, and lithological vari-
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Figure 1. Geology map of the study area.

ations, necessitates a more sophisticated predictive modeling ap-
proach. Traditional classification methods struggle to effectively
differentiate mineralized from non-mineralized zones, leading to
inefficiencies in exploration efforts. Additionally, single-model
machine learning techniques, while useful, often fail to general-
ize across diverse geological conditions.

In this study, we implemented an integrated ensemble machine
learning framework using SVM and CART to enhance gold min-
eral prospectivity mapping in Yagba West. By leveraging terrain
and spectral indices derived from remote sensing, geological, and
geophysical data, our approach improves classification accuracy,
reduces predictive bias, and enhances model transparency. Inte-
grating SRTM DEM, Landsat 8 imagery, geological maps, and
aeromagnetic data, this method provides a cost-effective, data-
driven alternative to traditional exploration techniques, enabling
precise identification of gold-bearing zones in structurally con-
trolled terrains.

2. GEOLOGY OF THE STUDY AREA
The geology of Yagba West, Kogi State, shown in Figure 1 is
part of the Precambrian Basement Complex of Nigeria, which
is composed of a diverse range of lithological units, including
migmatite-gneiss complex and schist belts [20].

These lithological formations play a fundamental role in
gold mineralization by providing the necessary structural and
geochemical conditions for ore deposition. The migmatite-
gneiss complex, which comprises foliated biotite gneisses, quart-
zofeldspathic gneisses, and migmatitic rocks, forms the region’s
basement framework. Although these rocks are not primary hosts
for gold deposits, their structural deformation, coupled with their
proximity to shear zones and fault systems, enhances their po-
tential to channel hydrothermal fluids, leading to mineralization
along fractures and vein systems.

The schist belts within the study area, primarily composed of
quartzite, mica schists, and phyllites, exhibit significant defor-
mation and serve as favorable hosts for gold mineralization due
to their permeability and chemical reactivity. These metased-
imentary sequences facilitate hydrothermal alteration and fluid
migration, which are essential processes in gold deposition [21].

Gold-bearing schist formations are commonly associated with
quartz veins and sulfide mineralization, particularly arsenopy-
rite and pyrite. Additionally, the occurrence of hydrothermal
brecciation, silicification, and iron oxide alteration within these
schist belts further reinforces their potential for gold mineraliza-
tion [22].

Granitic intrusions, including biotite granites and porphyritic
granites, are also prevalent in the area and contribute significantly
to hydrothermal processes associated with gold mineralization.
These granitoids serve as heat sources that drive the circulation
of mineralizing fluids, mobilizing gold and other metals from
deeper crustal levels [23]. The granitic rocks in the region dis-
play feldspar alteration, quartz veining, and sulfide mineraliza-
tion, all of which are indicative of hydrothermal activity and po-
tential gold enrichment [23].

Structurally, the study area is characterized by major fault sys-
tems, shear zones, and fracture networks, which act as primary
conduits for hydrothermal fluid movement. Shear zones play
a critical role in mineralization by creating zones of weakness
within the lithological framework [23]. These zones facilitate the
circulation and entrapment of hydrothermal fluids, leading to the
deposition of gold along faults and fractures [21]. The interac-
tion between shear zones and lithological units enhances the con-
centration of ore minerals, particularly in areas where regional
deformation has intensified permeability and chemical alteration
processes. These structural features, identified through aeromag-
netic and remote sensing techniques, play a critical role in con-
trolling the spatial distribution of gold mineralization [21]. Ar-
eas where regional shear zones intersect lithological contacts are
particularly prospective for gold exploration as they provide fa-
vorable conditions for gold deposition within quartz veins, stock-
work systems, and sulfide-rich zones.

Hydrothermal alteration serves as an important criterion for
identifying gold-rich zones within the study area. The presence
of alteration minerals such as iron oxides (hematite, limonite),
clay minerals (kaolinite, illite), and carbonate veining indicates
past hydrothermal activity closely linked to gold mineralization
[22]. Remote sensing techniques, particularly spectral band ra-
tio analysis using Landsat 8 imagery, are valuable in detecting
these hydrothermal signatures. Indices such as the iron oxide
ratio (B4/B7), hydrothermal alteration ratio (B7/B6), and clay-
carbonate index (B6/B5) provide insights into areas with poten-
tial gold mineralization [5].

Overall, the combination of lithological units within the study
area creates a geologically favorable environment for goldminer-
alization. Quartzite and mica schists serve as primary host rocks
due to their permeability and capacity to trap gold-bearing flu-
ids, while structural features such as faults and shear zones act
as conduits for fluid migration and ore deposition. The role of
intrusive granitoids in driving hydrothermal fluid mobilization,
along with the presence of alteration minerals and iron oxides,
further supports the potential for gold mineralization in the re-
gion [23]. By integrating remote sensing, aeromagnetic data,
and geological mapping, this study provides a robust approach
for delineating gold-bearing zones. This integration enables the
application of machine learning models such as Support Vector
Machine (SVM) and Classification and Regression Tree (CART)
to enhance gold prospectivity mapping.
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Table 1. Specific bands utilized [24].
Band
Number

Description Wavelength
(µm)

Spatial
Resolution
(m)

Band 1 Coastal Aerosol 0.43 – 0.45 30
Band 2 Blue 0.45 – 0.51 30
Band 3 Green 0.53 – 0.59 30
Band 4 Red 0.64 – 0.67 30
Band 5 Near-Infrared

(NIR)
0.85 – 0.88 30

Band 6 Shortwave
Infrared 1

1.57 – 1.65 30

Band 7 Shortwave
Infrared 2

2.11 – 2.29 30

Band 8 Panchromatic 0.50 – 0.68 15
Band 9 Cirrus 1.36 – 1.38 30

3. MATERIALS AND METHODS
3.1. MATERIALS
This study integrates multiple datasets to assess gold prospec-
tivity in the Yagba West area, leveraging remote sensing, geo-
physical, and geological data sources. The Shuttle Radar Topog-
raphy Mission Digital Elevation Model (SRTM DEM) [25] was
used to obtain high-resolution elevation data, which is crucial
for terrain analysis and understanding topographic influences on
mineralization. Aeromagnetic data played a vital role in analyz-
ing subsurface magnetic properties, enabling the identification of
structural features of the tilt angled map such as faults and lin-
eaments that control mineralization pathways. Additionally, the
Yagba West Geological Map provided detailed insights into the
lithological units and structural configurations of the study area,
serving as a fundamental reference for geological interpretation.
Landsat 8 Operational Land Imager (OLI) Data: Captures

multispectral imagery across various bands, instrumental for
mineral exploration. The specific bands utilized are shown in
Table 1.

3.2. METHODS
3.2.1. Flowchart
In this study, we employed SVM and CART models to pro-
duce gold mineral prospectivity maps in YagbaWest, Kogi State.
The methodology integrates geology map, lineament density
map, terrain attributes, and spectral indices derived from mul-
tiple datasets, including the Shuttle Radar Topography Mission
(SRTM) Digital ElevationModel (DEM), Landsat 8 imagery, ge-
ological maps, and aeromagnetic data in the form of a tilt-angled
lineament density map. The workflow of the study is illustrated
in Figure 2.
The Region of Interest (ROI) using Google Earth Engine

(GEE) was defined, ensuring that all analyses remain within
the designated boundary. A DEM from SRTM is used to de-
rive significant topographic features such as hillshade, slope, as-
pect, curvature, roughness, and the Topographic Wetness Index
(TWI). These attributes contribute to understanding the land-
scape’s structural characteristics and its influence on mineraliza-
tion.

Figure 2. Flowchart of the study area.

Landsat 8 imagery undergoes preprocessing to extract spec-
tral band ratios that are indicative of gold mineralization. These
include B6/B5 (clay minerals and moisture), B4/B7 (iron ox-
ide presence), B7/B6 (hydrothermal alteration zones), B5/B4
(vegetation masking), and B7/B5 (clay and carbonate materi-
als). The geological and lineament density maps complement
these datasets and were uploaded to GEE environment. The re-
flectance curves were plotted to classify the potential mineral-
ized zones of the terrain and spectral indices. Subsequently, all
datasets were combined into a comprehensive training stacked
dataset for models’ implementation.
Training samples are selected from known gold occurrences

and non-mineralized areas to create a balanced dataset. This
dataset is partitioned into 80% for training and 20% for testing to
ensure robust model evaluation. The SVM model is configured
with a linear kernel and a cost parameter of 10 to optimize class
separation between mineralized and non-mineralized zones. The
CART model constructs a decision tree that systematically par-
titions the dataset to enhance classification accuracy.

3.2.2. Selection of training sample points

The SVM and CART algorithms necessitate both mineralized
and non-mineralized training points to effectively delineate gold
prospectivity zones [26]. While the selection of mineralized
sites is relatively straightforward, the identification of non-
mineralized locations poses a significant challenge. Various
methodologies for selecting non-mineralized sites have been re-
viewed by Ref. [15], providing valuable insights into best prac-
tices for ensuring robust and unbiased model training.
In alignment with previous studies, this research adopts a

random selection approach for non-mineralized sites across the
study area. This method minimizes potential bias and ensures
that the dataset adequately represents both prospective and non-
prospective zones for gold mineralization. The trained SVM and
CARTmodels are then applied to the integrated dataset, facilitat-
ing the classification of regions based on their gold prospectiv-
ity. The resultant mineral prospectivity maps (MPMs) provide a
spatial representation of areas with varying degrees of gold min-
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Figure 3. Schematic diagram of SVM architecture.

eralization potential.
To evaluate the predictive performance of these models, stan-

dard accuracy assessment metrics, was employed. These metrics
offer a quantitative measure of model reliability in distinguish-
ing between mineralized and non-mineralized regions, thereby
validating the effectiveness of the predictive framework in gold
mineral exploration.

3.2.3. Support vector machine (SVM)
Figure 3 illustrates the schematic structure of an SVM, where
the kernel function K (x, x i) maps input data into a higher-
dimensional space to facilitate classification.

The output of the hidden node for input vector xn is obtained
through the selected kernel function, enabling the SVM to create
a hyperplane for classification [27].

The decision function of SVM is given by:

f (x) =
n∑
i=1

αiyiK (x, x i) + b, (1)

where xi are the support vectors, yi are the Langrange multipliers
(weights), K (x, x i) is the kernel function, and b is the bias term.
The final prediction function for the SVM model is:

f (x) = ω.∅(x) + b, (2)

whereω represents the weight parameter,∅(x) is the transformed
feature space, f (x) is the predictive output variables.
SVM is an effective machine learning algorithm for handling

complex datasets with distinct class boundaries in rugged ter-
rains. It identifies the optimal hyperplane that maximizes the
margin between different classes in a high-dimensional space,
thereby enhancing classification accuracy. The application of
SVM in mineral exploration has been extensively documented
in recent studies [28, 29].

3.2.4. Classification and regression trees (CART)
CART is a decision tree-based algorithm used for both classifi-
cation and regression tasks. It iteratively partitions the dataset by
selecting features that provide the highest information gain, con-
structing a tree-like decision model. The algorithm is widely rec-
ognized for its simplicity and interpretability in modeling com-
plex datasets. Its application in mineral exploration and geo-
sciences has been discussed in previous studies [30, 31].

In this study, the choice of SVM and CART over other en-
semble machine learning models, such as Random Forest (RF),
Extreme Gradient Boosting (XGBoost), k-Nearest Neighbors

Figure 4. Figure 4: (a) Lineament density map (b) Curvature map (c) Digital
elevation model map (d) Roughness (e) Slope map (f) Topographic wetness
index (TWI) Map and (g) Aspect map.

(kNN), and Convolutional Neural Network (CNN), was based
on their interpretability and computational efficiency. SVM is
particularly effective for high-dimensional datasets and provides
well-defined decision boundaries, making it ideal for geospa-
tial classification tasks [28]. CART, on the other hand, offers
a rule-based classification approach that is easy to interpret and
implement in geological studies [31]. While RF, kNN, XGBoost,
and Neural Networks often provide higher accuracy, they re-
quire larger training datasets and extensive hyperparameter tun-
ing, which may not be feasible in mineral prospectivity studies
with limited training data [28]. The selection of SVM and CART
ensures a balance between accuracy, interpretability, and compu-
tational feasibility to integrate geological, geophysical, and re-
mote sensing datasets for delineating potential gold mineraliza-
tion zones in the study area.

4. RESULTS
4.1. TERRAIN INDICES AND THEIR SIGNIFICANCE IN

MINERALIZATION
The SRTM DEM was utilized to derive essential topographic,
geomorphology, and hydrologic features controlling mineraliza-
tion. These features include hillshade, slope, aspect, curvature,
roughness, lineament density, and TWI, as illustrated in Figure
4.

Figure 4 presents the various terrain indices employed in the
study. These indices provide essential insights into terrain vari-
ability, moisture retention, and structural formations influenc-
ing mineralization. The Lineament Density Map (Figure 4a)
highlights geological discontinuities such as faults and fractures,
which act as conduits for hydrothermal fluids. The Curvature
Map (Figure 4b) identifies regions influenced by tectonic defor-
mation, where concave landforms may trap mineralized fluids,
while convex features could indicate erosion-exposed mineral-
ized zones. The Digital Elevation Model (Figure 4c) provides
terrain elevation data, aiding in the identification of favorable
geological settings and drainage networks. The Roughness Map
(Figure 4d) reflects variations in surface irregularity, often co-
inciding with faulted zones conducive to mineralization. The
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Figure 5. Spectral indices maps of the study area.

Slope Map (Figure 4e) helps detect steep regions where mineral
ore-bearing formations may be exposed. The Topographic Wet-
ness Index (TWI) Map (Figure 4f) represents surface moisture
accumulation, which plays a role in gold transport and deposi-
tion. Lastly, the Aspect Map (Figure 4g) provides information
on slope orientation, which can influence erosion patterns and
the exposure of mineralized formations.

4.2. SPECTRAL INDICES AND THEIR SIGNIFICANCE IN
MINERALIZATION

Landsat 8 surface reflectance data was processed to enhance
spectral signatures associated with gold mineralization. Several
key spectral indices (Figure 5) were computed to effectively map
gold mineralization zones.
The spectral indices used in gold mineral prospectivity map-

ping include several band ratios that highlight key geological and
mineralogical features. The Ratio 6/5 is effective in detecting
clay minerals and moisture content, while the Ratio 4/7 is use-
ful for identifying iron oxide deposits. The Ratio 7/6 helps in
mapping hydrothermal alteration zones, which are crucial indi-
cators of gold mineralization. Additionally, the Ratio 5/4 serves
as a vegetation masking index to reduce interference from plant
cover. The Ratio 7/5 is sensitive to the presence of clay and car-
bonate minerals, and the Ratio 6/7 is used for detecting chlorite
and epidote, both of which are associated with hydrothermal al-
teration processes.

4.3. MACHINE LEARNING-BASED GOLD MINERAL
PROSPECTIVITY MAPPING

Machine learning classifiers, Support Vector Machine (SVM),
and Classification and Regression Trees (CART) were applied
to classify gold mineral prospectivity areas using an integrated
stacked dataset. This dataset was derived from geological maps,
lineament density, terrain indices, and spectral indices. The clas-
sification models were trained using training points obtained
from known gold occurrences and non-mineralized zones, facil-
itating the identification of potential gold-bearing regions.
The SVM model was trained using a linear kernel with a cost

parameter of 10, optimizing the classifier tomaximize themargin

Figure 6. (a) SVM gold mineral prospectivity map, (b) CART gold mineral
prospectivity map.

between mineralized and non-mineralized areas. The classifica-
tion process involved feature selection from the stacked dataset
to enhance model efficiency.
The CART classifier was implemented using a decision-tree-

based learning approach, leveraging hierarchical splitting of fea-
ture values to classify mineralized zones. The model was trained
using the same stacked terrain and spectral dataset as the SVM
model but employed a rule-based methodology to distinguish
between mineralized and non-mineralized regions. The CART
classifier was successfully trained and applied to classify the
study area. The gold mineral prospectivity maps generated by
SVM and CART are presented in Figures 6(a) and 6(b), respec-
tively.
These maps delineate gold mineralized and non-gold mineral-

ized zones, illustrating the spatial distribution of potential gold
deposits within the study area.

4.4. DISCUSSION OF THE SPATIAL DISTRIBUTION OF
HIGH-PROSPECT GOLD-BEARING AREAS

Figures 6a and 6b illustrate the spatial distribution of high-
prospect gold-bearing zones within the study area, represented
by gold-colored regions. These zones are predominantly con-
centrated in the northeastern and southeastern parts of the study
area, exhibiting distinct structural trends. The northern section
follows a north-northeast to south-southwest (NNE–SSW) ori-
entation, while the southern region aligns along a northwest to
southeast (NW–SE) structural trend. These high-prospect areas
are characterized by elevated slope, roughness, and hydrothermal
alteration indices, indicating structural deformation and mineral-
ization processes.
The performance of the SVM and CART models in gold

prospectivity mapping was evaluated, revealing notable differ-
ences in accuracy and predicted gold occurrence areas. The SVM
model (Figure 6a) identified a prospective gold mineralization
area of 249.58 km², whereas the CART model (Figure 6b) de-
lineated an area of 132.13 km². SVM demonstrated a broader
classification, capturing a more extensive distribution of poten-
tial deposits, while the CARTmodel produced amore precise and
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Table 2. Models accuracy assessments.
SVM Model Precision Recall F1 - Score
Non – Gold 1.00 0.91 0.95
Gold 0.94 1.00 0.97
Validation Accuracy 0.96

CART Model Precision Recall F1 - Score
Non – Gold 1.00 0.94 0.97
Gold 0.94 1.00 0.97
Validation Accuracy 0.97

Figure 7. Accuracy assessment box plot.

well-defined classification, emphasizing structurally controlled
gold occurrences. Notably, the SVM-based delineation extended
117.4 km² beyond the areas classified by CART, suggesting its
capability to detect widespread mineralization patterns.

The classification results further demonstrate that the SVM
classifier effectively delineates gold-bearing zones by capturing
key geological, structural, geomorphological, hydrological, and
spectral characteristics from the stacked dataset. These findings
highlight SVM as a robust approach for identifying gold miner-
alization patterns within the study area.

4.5. GOLD ACCURACY ASSESSMENT RESULTS

Gold prospectivity mapping relies on a robust accuracy assess-
ment to validate predictive models in mineral exploration. This
study employed Support Vector Machine (SVM) and Classifica-
tion and Regression Tree (CART) models to classify gold and
non-gold regions. The evaluation metrics, precision, recall, F1-
score, and validation accuracy in Table 2 is represented in Figure
7.

Additionally, visual representations such as Figure 8 (ROC
Curve), Figure 9 (Precision-Recall Bar Chart), and Figure 10
(Confusion Matrices) further facilitate a comprehensive under-
standing of model performance.

Figure 8. ROC/AUC curves for SVM and CART models.

Figure 9. Precision, recall, and F1 - score bar chart.

Figure 10. Confusion matrices.

4.6. INTERPRETATION OF GOLD ACCURACY ASSESSMENT
RESULTS

The classification metrics in Table 2 demonstrate the predictive
performance of both models. The SVM model achieved a pre-
cision of 1.00, recall of 0.91, and an F1-score of 0.95 for the
non-gold class, while the gold class attained a precision of 0.94,
recall of 1.00, and an F1-score of 0.97, with an overall valida-
tion accuracy of 0.96. Similarly, the CART model demonstrated
higher recall for non-gold (0.94 compared to 0.91 in SVM) and
a slightly improved validation accuracy of 0.97. These results
suggest that while both models perform well, the CART model
exhibits superior recall and overall accuracy.

Figure 9 (Precision-Recall Bar Chart) visually compares the
classification performance of SVM and CART. Precision mea-
sures the proportion of correctly predicted gold (or non-gold)
samples out of all predicted samples of that class. The precision
value of 1.00 for non-gold in both models, as shown in Table 2,
indicates that all predicted non-gold samples were indeed non-
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gold, demonstrating the absence of false positives. The gold class
precision of 0.94 suggests that 94% of gold predictions were cor-
rect, with some misclassified as non-gold. Recall, which quan-
tifies the proportion of actual gold samples correctly identified,
achieved a perfect score (1.00) in both models, signifying that all
gold samples were classified correctly. However, the recall val-
ues for non-gold (0.91 in SVM and 0.94 in CART) suggest that
SVM misclassified more non-gold samples compared to CART.
The F1-score, balancing precision and recall, was 0.95 for non-
gold in SVM and 0.97 in CART, as visualized in Figure 6, rein-
forcing the slightly stronger performance of CART in classifica-
tion.
Further validation was conducted using Figure 8 (ROC Curve)

and AUC values. The ROC curve illustrates the trade-off be-
tween the True Positive Rate (Recall) and the False Positive
Rate (FPR), providing insight into the models’ ability to dif-
ferentiate between gold and non-gold regions. AUC (Area Un-
der the Curve) values quantify classification effectiveness, with
higher values indicating improved discrimination. Both SVM
and CART models demonstrated high AUC values, reinforcing
their robustness in classification. The smoothened ROC curves
(Figure 8) effectively visualize classification performance, where
curves closer to the top-left corner indicate superior classification
ability.
Figure 9 (Precision-Recall-F1 Score Bar Chart) was generated

to facilitate a comparative evaluation. This grouped bar chart
highlights the classification performance across different metrics
for each class. The CART model demonstrated slightly higher
recall and validation accuracy compared to SVM, while both
models performed equally well for gold classification. Addition-
ally, Figure 10 (ConfusionMatrices) illustrates actual versus pre-
dicted classifications, further confirming the high classification
accuracy of both models.
The assessment techniques presented in Table 2, Figures 8,

9, and 10 provide a rigorous evaluation of model performance.
The high precision and recall values in Table 2 indicate that both
models are highly reliable in classifying gold occurrences. Min-
imizing false predictions is critical in mineral exploration, and
the precision-recall analysis in Figure 9 helps quantify the trade-
off between false positives and false negatives. Moreover, the
ROC-AUC analysis in Figure 5 and validation accuracy in Table
2 allow for comparative model evaluation, aiding in selecting the
most suitable classifier for gold prospectivity mapping.

4.7. DISCUSSION OF RESULTS
The differences in the spatial extent of mineralization predicted
by the SVM and CART models can be attributed to variations
in their classification tendencies. The SVM model exhibited a
higher recall for the gold class (1.00) but a slightly lower recall
for the non-gold class (0.91), whereas the CART model demon-
strated a recall of 1.00 for gold and 0.94 for non-gold, as pre-
sented in Table 2. The lower recall for non-gold in SVM sug-
gests that it misclassified more non-gold areas as gold, leading
to a larger predicted mineralized zone.
Moreover, SVM’s decision boundary is more flexible com-

pared to CART, allowing it to capture subtle patterns in the
dataset and classifymore regions as potential gold-bearing zones.
While this flexibility enhances sensitivity to gold occurrences, it

Figure 11. Superposition of the SVM gold mineral prospectivity map on the
geology map.

Figure 12. Superposition of the SVM gold mineral prospectivity map on the
geology map.

also increases the likelihood of false positives, as evident from
the classification performance visualized in Figure 9 (Precision-
Recall Bar Chart) and Figure 10 (Confusion Matrices). The
broader mineralized area identified by SVM may thus reflect its
tendency to prioritize capturing all gold occurrences at the ex-
pense of some misclassifications.
In contrast, CART demonstrated a slightly higher validation

accuracy (0.97 compared to 0.96 for SVM) and better differenti-
ation between gold and non-gold regions, leading to a more con-
servative mineralization prediction. This difference highlights
the trade-off between recall and precision in mineral prospectiv-
ity modeling, emphasizing the need for a balanced approach in
selecting the optimal classification model for gold exploration.

4.8. SUPERPOSED SVM AND CART GOLD MINERAL
PROSPECTIVITY MAPPING ON THE GEOLOGICAL MAP

Figures 11 and 12 illustrate the superposition of the SVM and
CART gold mineral prospectivity maps onto the geological map,
providing a crucial validation step in this study. This provides
an opportunity to analyze the spatial correlation between pre-
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dicted gold occurrences and known geological formations. The
geological characteristics, structural deformation, and hydrother-
mal alteration zones influence the mineralization patterns iden-
tified by both machine learning models. The spatial distribution
of gold occurrences is predominantly concentrated in quartzite,
quartz schist, gabbro, and quartz gabbro formations along NNE–
SSW and NW–SE orientations, reinforcing the structural control
of mineralization. These lithologies have been previously iden-
tified as favorable host rocks for gold mineralization due to their
permeability and susceptibility to structural deformation [23].

Furthermore, the results indicate that areas predicted to have
high gold prospectivity are predominantly located within schist
belts, quartzite formations, and regions associated with flaggy
quartzite. This finding aligns with previous studies that have
demonstrated the high potential of quartzite and mica schists for
gold mineralization due to their structural deformation, perme-
ability, and chemical reactivity [21, 22].

The presence of undifferentiated porphyrobiastic older gran-
ites and amphibolite zones in the southwestern part of the study
area suggests a strong correlation between intrusive activity and
mineralization. This observation reinforces earlier geological
surveys associating granitoids with hydrothermal gold deposi-
tion [22].

5. SUMMARY AND CONCLUSION
Both the CART and SVM models effectively delineate mineral-
ized zones, albeit with variations in spatial predictions. Notably,
the SVM model identified a significantly larger gold-occurring
area (249.58 km2) compared to the CART model (132.13 km²).
Classification metrics demonstrate their predictive performance,
with the SVMmodel achieving an overall validation accuracy of
0.96. In contrast, the CARTmodel exhibited a slightly higher ac-
curacy of 0.97, reinforcing its marginally superior reliability for
gold prospectivity mapping. Nonetheless, both models demon-
strate high classification performance, validating their suitability
for mineral exploration.

Despite the robustness of the models, some limitations per-
sisted. First, the models rely on available remote sensing,
geophysical, and geological datasets, which may introduce bi-
ases depending on data resolution and quality. Additionally,
while machine learning techniques effectively classify miner-
alized zones, their predictive capacity remains constrained by
training data representativeness. Field validation and geochemi-
cal assays are recommended to enhance confidence in identified
prospective zones.

The findings can be extended beyond Yagba West and high-
light the applicability of machine learning techniques for min-
eral prospectivity mapping in diverse geological settings. The
integration of SVM and CART with remote sensing and geo-
physical datasets provides a scalable approach for mineral explo-
ration across structurally complex terrains. These models can be
adapted to similar orogenic and shear zone-hosted gold systems,
offering a cost-effective means to prioritize exploration targets
before detailed field investigations.

This study innovatively builds upon previous research by in-
tegrating multiple geospatial datasets, geological maps, linea-
ment density, terrain variables, and enhanced spectral indices
within a machine learning framework. Unlike prior studies that

rely on conventional GIS-based overlay techniques, this research
demonstrates the advantage of supervised learning models in im-
proving classification accuracy. Moreover, the study highlights
the structural control of gold mineralization in the region, rein-
forcing the significance of fault systems and hydrothermal al-
teration zones in mineral exploration. The overlap of SVM and
CART prospectivity maps with known mineral occurrences fur-
ther validates the efficacy of the proposed methodology.

RECOMMENDATIONS
i. Future research should explore the application of other en-

semble machine learning models, such as Random Forest
(RF), Gradient Boosting, and Deep Learning approaches
(e.g., Convolutional Neural Networks - CNNs), to enhance
gold mineralization predictions.

ii. High-resolution satellite imagery (e.g., Sentinel-2, ASTER,
or hyperspectral data) should be incorporated for improved
spectral analysis and more precise differentiation of alter-
ation minerals.

iii. The integration of geophysical datasets, including electro-
magnetic (EM) and induced polarization (IP) surveys, can
provide valuable insights into host mineralization veins and
enhance subsurface mineral detection.

iv. Field validation through geological mapping, rock sam-
pling, and geochemical analysis should be conducted to
confirm the predicted mineralized zones and refine model
accuracy.

v. The methodology employed in this study can be extended
to other mineral exploration projects involving structurally
controlled deposits, such as copper, lead, and zinc mineral-
ization.

vi. Governments and exploration companies should adopt ma-
chine learning and remote sensing technologies to optimize
mineral exploration efforts, improve resource estimation,
and reduce exploration costs.
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