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A B S T R A C T

Despite several efforts, Tuberculosis (TB) is still a global leading cause of death. This paper proposed an age-structured deterministic
model governing the transmission dynamics and control of TB in the presence of vaccination integrated into the eligible population.
Qualitative analysis of the model was carried out to obtain the disease-free equilibrium point of it. The effective reproduction number,
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settings.
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1. INTRODUCTION
Tuberculosis (TB) is an infectious disease that most frequently
affects the lungs, but it can also affect the brain, lymph
nodes,kidneys, bones, joints, ear, urinary tract, spine, skin and
other parts of the body [1, 2]. TB is caused by a type of bacteria
called Mycobacterium tuberculosis (Mtb) [3].
It spreads through the air when infected people cough, sneeze

or spit [3, 4]. A few germs inhaled by an individual can cause TB
infection. Most of the infected individuals with Mtb are capable
to control the infection and remain in a latent stage in which they

∗Corresponding Author Tel. No.: +234-803-5202-740.
e-mail: lawal.fatimah@bouesti.edu.ng (Omowumi Fatimah

Lawal)

cannot transmit the disease [4].
It is believed that approximately 25% of the world population

has contracted TB bacteria; however, the majority of those in-
fected will not develop TB disease, and some will recover from
the infection [3].

Despite significant advancements in prevention and treatment,
tuberculosis disease continues to be the global leading cause of
death, the leading cause of death for individuals living with HIV,
and a major contributor to antimicrobial resistance [1, 2].

Interestingly, about one-fourth of the world population is in-
fected with Mtb, with approximately 10 million cases and 1.5
million deaths annually [1, 3]. It is however, treatable if an early
diagnosis is made and the right treatment plan is followed, which
may take six months to two years for active TB to clear [1]. In
addition to posing a major health concern to low and middle in-

https://nsps.org.ng
https://flayoophl.com
https://https://flayoophl.com/journals/index.php/pnspsc
https://flayoophl.com
https://nsps.org.ng
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


2 Lawal & Abidemi / NSPS-FUOYE-25 / Proceedings of the Nigerian Society of Physical Sciences 2 (2025) 179

come countries, TB affects economic growth negatively [1].
A host of mathematical modelling work on infectious diseases

like typhoid fever, Dengue Fever, COVID-19, yellow fever, TB,
cholera, malaria, HIV, among others, have been done [5–11]. In
addition, manymodelling works on TB have been carried out, for
instance, Ronoh et al. [1] extends the standard SEIRS epidemi-
ologymodel of TB to includeMDR-TB, focusing on susceptible,
exposed, infected, resistant, and recovered humans. The basic re-
production number was calculated, and the existence of disease-
free equilibrium and endemic equilibrium was confirmed. Nu-
merical analysis showed that both active and MDR-TB strains
persist due to a lack of permanent immunity, while recovered in-
dividuals can lose immunity and become susceptible again.
Also, Hogan et al. [12] use mathematical modelling approach

in understanding transmissible infections’ dynamics. The au-
thors used a common childhood infection as a case study and
examined age structures in compartmental differential equation
models. The research shows that incorporating age structures
does not alter the overall dynamics, but it is helpful in simulating
age-dependent intervention strategies.
Similarly, Peter et al. [13] presented a deterministic model

for the population dynamics of Mtb, the causative agent of TB,
focusing on the impact of competition among bacteria on infec-
tion prevalence. Mtb population was assumed to have two types
of growth. The model qualitative analysis and numerical results
suggest forward, backward, and S-shaped bifurcations when the
reproduction number is less than unity and up to three bacteria-
present equilibria namely, two locally asymptotically stable, and
one unstable.
Sangotola et al. [14] developed a five-compartment model

to comprehend the dynamics of TB in communities. When the
basic reproduction number is less than one, it shows a locally
asymptotically stable disease-free equilibrium point; when it is
above one, it reveals an endemic equilibrium. Control measures
were evaluated using numerical simulations and sensitivity anal-
ysis. Their research suggests the optimal ways to control TB, em-
phasizing early treatment and prevention strategies,which were
both effective.
In Moya et al. [15], a mathematical model was developed

to study the effectiveness of therapy in TB, and the impact of
HIV/AIDS and diabetes on TB spread and drug resistance. The
model considered the relationship among TB, HIV/AIDS and di-
abetes, as well as the behavior of multi-drug resistance (MDR-
TB) and extensively drug-resistant (XDR-TB). Analysis of the
model showed that MDR-TB and XDR-TB halt TB control, with
a more significant number of drug-sensitive TB cases in in-
fected compartments. The study suggests increasing attention
to the diabetic population, improving glucose control, and rais-
ing specialized medical consultations to achieve permanence in
TB treatment and control the entry of individuals to the diabetic
compartments by diabetes tests.
However, studies on the use of age-structured deterministic

model to assess the transmission dynamics and control of TB
are limited in the literature. Thus, this study proposes an age-
structured compartmental model that divides the entire popula-
tion into two: the vaccine target population and the non-vaccine
target population. Consequently, this study aims to examine the
impact of vaccination integrated into the eligible population on

Table 1. Description of the model’s variables.
Variable Description

N Total human population
S1 Population of vaccine-target susceptible individuals
E1 Population of vaccine-target exposed individuals
I1 Population of vaccine-target symptomatic infectious individuals
C1 Population of vaccine-target carrier individuals
T1 Population of vaccine-target treated individuals
R1 Population of vaccine-target recovered individuals
V1 Population of vaccinated individuals
S2 Population of non-vaccine-target susceptible individuals
E2 Population of non-vaccine target exposed individuals
I2 Population of non-vaccine target symptomatic infectious individuals
C2 Population of non-vaccine target carrier individuals
T2 Population of non-vaccine target treated individuals
R2 Population of non-vaccine target recovered individuals
V2 Population of vaccinated individuals in the non-vaccine target age group

the spread and control of TB.
The remaining parts of the article are structured as follows:

Section 2 discusses the formulation of the model. In Section 3,
the positivity and boundedness of the model solution, and de-
tailed qualitative analysis of the model are carried out. In section
4, simulations of themodel is conducted, the results are presented
and discussed, while in Section 5, concluding remarks from the
study are given. This section also highlights the direction for
further studies.

2. MODEL FORMULATION
In this section, we propose a deterministic model describing the
transmission dynamics and control of TB in an age-structured
setting. The total population under consideration is split into two
age group of 6 months to 45 years and 46 years and above. Indi-
viduals in the age class 6 months to 45 years are considered to be
vaccine-eligible (vaccine-target) population, while individuals in
the age class 45 years and above are assumed to be non-vaccine-
eligible (non-vaccine-target) population. Each of the age-group
population is further divided into seven non-intersecting com-
partments of susceptible individuals, S, exposed individuals, E ,
symptomatic infectious individuals, I , carriers, C , treated indi-
viduals, T , recovered individuals, R, and vaccinated individuals,
V . Using the indices 1 and 2 to denote the compartments related
to the age-group 1 and 2, respectively, the total population at any
time t , denoted by N (t), is mathematically represented as

N (t) = S1(t) + E1(t) + I1(t) + C1(t) + T1(t)
+ R1(t) + V1(t) + S2(t) + E2(t) + I2(t)
+ C2(t) + T2(t) + R2(t) + V2(t). (1)

Consequently, the age-structured deterministic compartmental
model governing the dynamics of TB transmission and control is
a system of ordinary differential equations given by

dS1

dt
= Λ + ξV1 − β1

(C1 + σ1I1 + C2 + σ2I2)S1

N
− (θ + µ + ϵ)S1 + ωR1,

dE1

dt
= β1

(C1 + σ1I1 + C2 + σ2I2)S1

N
− (γ + µ + ϵ)E1,
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Table 2. Description of the model’s parameters.
Parameter Description
Λ Recruitment rate for human population
µ Human natural death rate
ϕ1 Rate of carrier progressing to symptomatic infectious in vaccine-target age group
ϕ2 Progression rate from carrier to symptomatic infectious in non-vaccine target age group
ϵ Maturation rate
β1 Effective transmission rate of TB from carriers and symptomatic individuals to the susceptible individ-

uals in the vaccine-target age group
β2 Effective transmission rate of TB from carriers and symptomatic individuals to the susceptible individ-

uals in the non-vaccine target age group
η Mass testing and treatment rate for carriers
γ Progression rate from exposed to infectious classes (symptomatic and carrier)
σ1 Reduction parameter for the transmission rate of TB from symptomatic individuals in the age group 1

to susceptible individuals in the vaccine-target age group relative to the transmission by carriers
σ2 Reduction parameter for the transmission rate of TB from symptomatic individuals in the age group 2

to susceptible individuals in the vaccine-target age group relative to the transmission by carriers
σ3 Reduction parameter for the transmission rate of TB from symptomatic individuals in the age group 1

to susceptible individuals in the non-vaccine-target age group relative to the transmission by carriers
σ4 Reduction parameter for the transmission rate of TB from symptomatic individuals in the age group 2

to susceptible individuals in the non-vaccine-target age group relative to the transmission by carriers
ξ Vaccine waning rate
δ1 TB-induced death rate in symptomatic infectious people
δ2 Disease-induced death in treated individuals
ω Natural immunity loss
κ Proportion of exposed human that becomes symptomatic
θ The vaccination rate for vaccine-eligible age group
τ Treatment rate for symptomatic infectious individuals in age group 1
r1 Recovery rate for treated individuals
r2 Natural recovery rate for carriers

dI1
dt
= κγE1 − (τ + δ1 + µ + ϵ)I1 + ϕ1C1,

dC1

dt
= (1 − κ)γE1 − (ϕ1 + µ + η + r2 + ϵ)C1,

dT1

dt
= τI1 + ηC1 − (δ2 + r1 + µ + ϵ)T1,

dR1

dt
= r2C1 + r1T1 − (µ + ω + ϵ)R1,

dV1

dt
= θS1 − (µ + ξ + ϵ)V1,

dS2

dt
= ϵS1 − β2

(C1 + σ3I1 + C2 + σ4I2)S2

N
− µS2 + ξV2 + ωR2,

dE2

dt
= ϵE1 + β2

(C1 + σ3I1 + C2 + σ4I2)S2

N
− (γ + µ)E2,

dI2
dt
= κγE2 − (τ + δ1 + µ)I2 + ϵI1 + ϕ2C2,

dC2

dt
= (1 − κ)γE2 − (ϕ2 + µ + η + r2)C2 + ϵC1,

dT2

dt
= τI2 + ηC2 − (δ2 + r1 + µ)T2 + ϵT1,

dR2

dt
= r2C2 + r1T2 − (µ + ω)R2 + ϵR1,

dV2

dt
= ϵV1 − (ξ + µ)V2, (2)

with the initial conditions at time t = 0 given by:

S1(0) > 0, E1(0) ≥ 0, I1(0) > 0, C1(0) ≥ 0, T1(0) ≥ 0,
R1(0) ≥ 0,V1(0) ≥ 0, S2(0) > 0,E2(0) ≥ 0, I2(0) > 0,
C2(0) ≥ 0, T2(0) ≥ 0, R2(0) ≥ 0, V2(0) ≥ 0. (3)

In Table 1, the state variables of model (2) are further described,
while Table 2 gives the physical meaning of each of the parame-
ters of the model.

3. MODEL ANALYSIS
3.1. POSITIVITY OF SOLUTIONS
It is known that all the model parameters in Table 2 are positive.
Thus, it is important to show that none of the state variables of
the model can ever be negative. Hence, from the first differential
equation of the model (2):

dS1

dt
= Λ + ξV1 + ωR − β1

(C1 + σ1I1 + C2 + σ2I2)S1

N
− (θ + µ + ϵ)S1

≥ −

[
β1

(C1 + σ1I1 + C2 + σ2I2)S1

N
+ (θ + µ + ϵ)S1(t)

]
,

dS2

dt
= ϵS1 + ξV2 − β2

(C1 + σ3I1 + C2 + σ4I2)S2

N
− µS2

≥ −[β2
(C1 + σ3I1 + C2 + σ4I2)S2

N
+ µS2(t)], (4)
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for all t ≥ 0 since S1(t) ≥ 0 and S2(t) ≥ 0 for all t ≥ 0. Using
integrating factor method, Equation (4) yields:

S1(t) ≥ S1(0) exp
(
−

[
m1t +

∫ t

0

β1(C1 + σ1I1 + C2 + σ2I2)S1

N
dτ

])
,

(5)

where m1 = θ + µ + ϵ and

S2(t) ≥ S2(0) exp
(
−

[
µt +

∫ t

0

β2(C1 + σ2I1 + C2 + σ4I2)S2

N
dτ

])
,

for all t ≥ 0. Following the same routine, it is easy to derive the
following inequalities for the other state variables:

E1(t) ≥ E1(0) exp (−(γ + µ + ϵ)t) ,∀t ≥ 0,
I1(t) ≥ I1(0) exp (−(τ + δ1 + µ + ϵ)t) ,∀t ≥ 0,
C1(t) ≥ C1(0) exp (−(ϕ1 + µ + δ2 + η + r2 + ϵ)t) ,∀t ≥ 0
T1(t) ≥ T1(0) exp (−(δ2 + r1 + µ + ϵ)t) ,∀t ≥ 0,
R1(t) ≥ R1(0) exp (−(µ + ω + ϵ)t) ,∀t ≥ 0,
V1(t) ≥ V1(0) exp (−(µ + ξ + ϵ)) ,∀t ≥ 0,
E2(t) ≥ E2(0) exp (−(γ + µ)t) ,∀t ≥ 0,
I2(t) ≥ I2(0) exp (−(τ + δ1 + µ)t) ,∀t ≥ 0,
C2(t) ≥ C2(0) exp (−(ϕ2 + µ + δ2 + η + r2)t) ,∀t ≥ 0,
T2(t) ≥ T2(0) exp (−(δ2 + r1 + µ)t) ,∀t ≥ 0,
R2(t) ≥ R2(0) exp (−(µ + ω)t) ,∀t ≥ 0,
V2(t) ≥ V2(0) exp (−(µ + ξ)) ,∀t ≥ 0.

From the above analysis, the following result is established:

Theorem 3.1. All the state variables S1(t), E1(t), I1(t), C1(t),
T1(t), R1(t), V1(t), S2(t), E2(t), I2(t), C2(t), T2(t), R2(t),and S2(t)
of the TB model (2) with positive initial conditions S1(0) > 0,
E1(0) ≥ 0, I1(0) > 0, C1(0) ≥ 0 , T1(0) ≥ 0, R1(0) ≥ 0, V1(0) ≥ 0,
S2(0) ≥ 0, E2(0) ≥ 0, I2(0) > 0, C2(0) ≥ 0, T2(0) ≥ 0, R2(0) ≥ 0
and V2(0) ≥ 0 remain positive for all time t ≥ 0.

Hence, the feasible region for the TB model (2) is defined by
Π ⊂ R14

+ , where

Π = {(S1(t),E1(t), I1(t),C1(t),T1(t),R1(t),V1(t), S2(t),E2(t),

I2(t),C2(t),T2(t),R2(t),V2(t)) ∈ R14
+ : N (t) ≤

Λ

µ

}
.

(6)

3.2. EXISTENCE OF DISEASE-FREE EQUILIBRIUM
The disease-free equilibrium (DFE) of model (2), denoted by Ψ,
is the steady state solution of the model when there is no disease
in the population. That is, when

dS1

dt
=
dE1

dt
=
dI1
dt
=
dC1

dt
=
dT1

dt
=
dR1

dt
=
dV1

dt
= 0,

dS2

dt
=
dE2

dt
=
dI2
dt
=
dC2

dt
=
dT2

dt
=
dR2

dt
=
dV2

dt
= 0,

and E1 = I1 = C1 = T1 = E2 = I2 = C2 = T2 = 0. Consequently,
the following sub-system of equations emerges from model (2):

Λ + ξV1 − (θ + µ + ϵ)S1 = 0,
θS1 − (µ + ξ + ϵ)V1 = 0,
ϵS1 − µS2 + ξV2 = 0,
ϵV1 − (ξ + µ)V2 = 0.

Table 3. Model parameter values.
Parameter Baseline Value Source
ω 0.05 [1]
β1 0.6501 [13]
β2 0.8501 Assumed
σ1 0.9 Assumed
σ2 0.8 Assumed
σ3 0.9 Assumed
σ4 0.8 Assumed
Λ 1364 [16]
θ 0.05 [16]
ξ 0.067 [13]
µ 0.43e-4*365 [16]
r1 0.01 [13]
r2 0.005 [13]
γ 0.00375 [13]
δ1 0.00001 [1]
δ2 0.00005 [13]
τ 0.01 [16]
ϵ 1/45 [2, 3]
κ 0.129 [17]
ϕ1 0.075 [16]
ϕ2 0.075 [16]
η 0.015 Assumed

Solving the above equations simultaneously, the DFE is obtained
as:

Ψ =
(
S∗1 ,E

∗
1 , I
∗
1 ,C

∗
1 ,T

∗
1 ,R

∗
1,V

∗
1 , S

∗
2 ,E

∗
2 , I
∗
2 ,C

∗
2 ,T

∗
2 ,R

∗
2,V

∗
2
)
, (7)

where the components of Ψ in (7) are given by

S∗1 =
Λm7

m1m7 − θξ
,

V1 =
θΛm7

m7(m1m7 − θξ)
,

S2 =
ϵm7Λ(m7m13 + θξ)
µm7m13(m1m7 − θξ)

,

V2 =
(m1m7 − θξ)ϵΛ + θΛϵm7 + ϵξΛ

m7m13(m1m7 − θξ)
,

with m7 = µ + ξ + ϵ and m13 = µ + ξ.

3.3. CONTROL REPRODUCTION NUMBER
Control reproduction number (denoted as Re), also known as ef-
fective reproduction number, is defined as the average number
of secondary case per infectious case in a population made up of
both susceptible and vaccinated hosts [18]. It helps to determine
the level of preventive and control measures required to control
an outbreak.
In this paper, the Next Generation Matrix method popularised

by the authors in Ref. [19] is employed to compute the Re of
model (2). Let x = (E1, I1,C1,T1,E2, I2,C2,T2)T be the infected
compartments in the TBmodel (2). Then, it can be deduced from
the model that:

dx
dt
= F (x) −V(x),
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(d) Treated individuals in non-vaccine target population

Figure 1. Simulation displaying the dynamics of the states variables of model
(2) with varying effective transmission rate of TB from carriers and symp-
tomatic infectious individuals to vaccine target susceptible populations.

where

F =



β1(σ1I1+σ2I2+C1+C2)S1
N
0
0
0

β2(σ3I1+σ4I2+C1+C2)S2
N
0
0
0


, (8)
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Figure 2. Simulation demonstrating the dynamics of the states variables of
model (2) with varying effective transmission rate of TB from carriers and
symptomatic infectious individuals to non vaccine target susceptible popu-
lations.

and
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(d) Recovery of treated in non-vaccine target individuals.

Figure 3. Simulation showing the dynamics of the states variables of model (2) with varying recovery due to treatment of TB from carriers and symptomatic
infectious.

V =



m2E1
−γκE1 − C1ϕ1 + m3I1
−γ(1 − κ)E1 + m4C1
−ηC1 − τI1 + m5T1
−ϵE1 + m7E2

−γκE2 − ϵI1 − C2ϕ2 + m8I2
−γ(1 − κ)E2 − ϵC1 + m9C2
−ϵT1 − ηC2 − τT2 + m10T2


, (9)

where

m2 = γ + µ + ϵ,m3 = τ + δ1 + µ + ϵ,

m4 = ϕ1 + µ + δ2 + η + r2 + ϵ,m5 = δ2 + r1 + µ + ϵ,

m6 = µ + ω + ϵ,m8 = γ + µ,m9 = τ + δ1 + µ,

m10 = ϕ2 + µ + δ2 + η + r2,m11 = δ2 + r1 + µ,m12 = µ + ω.

Thus, the matrix of the new infection terms F and matrix of the
transition termsV are the corresponding Jacobian matrices eval-

uated at the DFE Ψ, and are derived as:

F =



0 β1σ1S∗1
N ∗

β1S∗1
N ∗ 0 0 β1σ2S∗1

N ∗
β1S∗1
N ∗ 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 β2σ3S∗2

N ∗
β2S∗2
N ∗ 0 0 β2σ4S∗2

N ∗
β2S∗2
N ∗ 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (10)

and

V =



m2 0 0 0 0 0 0 0
−κγ m3 −ϕ1 0 0 0 0 0

−(1 − κ)γ 0 m4 0 0 0 0 0
0 −τ −η m5 0 0 0 0
−ϵ 0 0 0 m7 0 0 0
0 −ϵ 0 0 −κγ m8 −ϕ2 0
0 0 −ϵ 0 −(1 − κ)γ 0 m9 0
0 0 0 −ϵ 0 0 −η −τ + m10


.

Hence, the control reproduction number of model (2), defined
by Re = ρ(FV −1) (where ρ is the spectral radius of the Next
Generation Matrix FV −1), is calculated as

Re =
1
2

µγ

m2m3m4m8m9(m1m7 − θξ)2

(
R1 +

√
R2

)
, (11)
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(a) Carrier in vaccine target susceptible population.
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(b) Symptomatic infectious in non-vaccine target susceptible population.
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(d) Recovery due to treatment.

Figure 4. Simulation showing the dynamics of the states variables of model (2)with varying natural recovery of TB from carriers and symptomatic infectious.

where the expressions for R1 and R2 are provided in the Ap-
pendix.

4. NUMERICAL SIMULATIONS, RESULTS AND DISCUSSION
4.1. NUMERICAL SIMULATIONS
This part concentrates on the numerical simulations of the TB
model (2). The entire simulations are carried out in MATLAB
with ode45 routine. Initial conditions are considered as follows:
The total population at time t = 0 is taken as N (0) = 1200000,
where 700000 are vaccine-target individuals and 500000 are
non-vaccine-target population. We assumed that I1(0) = 2400,
E1(0) = 4 × I1(0), C1(0) = 2 × I1(0), T1(0) = 0.5 × I1(0),
R1(0) = 0.5 × I1(0) and V1(0) = 3 × I1(0), so that S1(0) =
700000− (E1(0)+ I1(0)+C1(0)+T1(0)+R1(0)+V1(0)). Also, we
assume that I2(0) = 1200, E2(0) = 4 × I2(0), C2(0) = 2 × I2(0),
T2(0) = 0.5× I2(0), R2(0) = 0.5× I2(0), V2(0) = 3× I2(0), so that
S2(0) = 500000− (E2(0)+ I2(0)+C2(0)+T2(0)+R2(0)+V2(0)).
The model parameter values are displayed in Table 3. These val-
ues are chosen so that, using equation (11), the estimated value
of Re is approximately Re = 2.596. This represents the reality of
settings (such as region or country) where TB is endemic.

4.2. RESULTS AND DISCUSSION
Figure 1 depicts the dynamic of varying effective transmission
rate (β1) of TB from carriers and symptomatic infectious indi-

viduals on vaccine target susceptible populations as shown in
Figures 1a-1d. Figures 1a, 1b and 1c show a significant rise
in the population of carrier, symptomatic infectious and treated
in vaccine target population as the effective transmission rate (β1)
increases the carrier (C1), symptomatic infectious (I1) and treated
population (T1) increases and decreases as the effective transmis-
sion rate drops which shows a direct proportional relationship ex-
ist between β1 and the the carrier (C1), symptomatic infectious
(I1) and treated (T1) individuals though very significant in vac-
cine target individuals as seen in Figures 1a, 1b and 1c while the
decrease/increase was not drastic in Figure 1d. The implication
is that anymeasure that will ensure the effective transmission rate
is reduced should be implemented. Since it positively impacts
the disease. These measures could include increased vaccination
coverage, improved hygiene practices, and early detection and
treatment of cases, as they all positively impact the disease.

Similarly, Figure 2 reveals the effect of varying effective trans-
mission rates in the non-vaccine target population as seen in Fig-
ures 2a-2d. The clarity of these Figures, 2a, 2b and 2c, is evident
in how they indicate a rise in the effective transmission rate re-
sults in a corresponding surge in the carrier, symptomatic infec-
tious and the treated individuals in the non-vaccine target popu-
lation. A rise or fall in the effective transmission rate does not
result in the airline, symptomatic infectious and treated individ-
uals in the vaccine target population.
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(f) Vaccinated in non-vaccine target population.

Figure 5. Simulation showing the dynamics of the states variables of model (2) with varying vaccine rate.

The significant increase in recovery of treated individuals in
the vaccine target population is a promising finding, as depicted
in Figures 3a and 3c. A 50% increase in the recovery rate leads
to a corresponding 50% increase from the baseline values, while
a 50% drop results in an equivalent decrease. Similarly, Figure
3b shows a direct proportional relationship. Although recovery
due to treatment in the non-vaccine target carrier population was
almost zero until around 80 days of the simulation, it witnessed
a significant rise that continued and peaked at nearly 100 days
of the simulation. Recovery of treated individuals in the vaccine
target population saw a significant increase from the beginning

of the simulation, which peaked at 40 to 70 days before falling
slightly. This finding underscores the potential impact of vac-
cination in the target population on the recovery of treated TB-
infected individuals.
It equally shows that the rise/decline in the recovery due to

treatment was not significant in the treated non-vaccine target
individuals, as shown in Figure 3d.
Figure 4 depicts the effect of varying natural recovery of TB in

carrier, symptomatic infectious, treated, and recovered individu-
als from TB infection.
Initially, approximately 4,800 individuals naturally recovered
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from TB as shown in Figure 4a. This was followed by a signifi-
cant drop around the 10th-15th day of the simulation, with only
about 1000 recovering on the 19th day. However, a subsequent
rise occurred, and by the 30-40 days of the simulation, 3200 per-
sons had recovered. A notable fall was observed on the 45th day,
which persisted throughout the simulation. By the 100th day,
less than 1000 people had recovered. The implication of these
findings is that an increase in the immunity of the carrier vac-
cine target population could lead to a substantial increase in the
number of individuals recovering naturally from TB infections,
offering hope for the future of TB treatment.

Figure 4b illustrates that there was no recovery from TB infec-
tion in the initial 80 days of the simulation, evenwith fluctuations
in the natural recovery rate from the baseline value. However,
from the 80-100 days of the simulation, there was a noticeable
rise in recovery, which increased or decreased as the natural re-
covery rate rose or fell from the baseline value. This suggests
that even in the later stages of the simulation, there is potential
for recovery, providing encouragement and motivation for fur-
ther research and treatment development. Figure 4c highlights
a significant rise in the number of individuals recovering from
TB infection. The number increased from 1,200 on the first day
to about 4,000 on the 45th day, peaking at 60 days. This peak
suggests that the 60-day mark could be an optimal time for treat-
ment. After this peak, there was a gradual decline in recovery
rates, with 2,500 individuals recovering naturally from the dis-
ease by the 100th day. Figure 4d indicates a significant fall from
a peak of 1200 at the initial stage of the simulation, which con-
tinues till 20 days, and on the 30th day, a slight rise followed by
a fall maintained till the end of the simulation. The figure shows
that the higher the natural recovery rate, the higher the number
of individuals who recovered due to treatment.

Figure 5 shows that the higher the vaccination rate, the lower
the population of TB carriers, the symptomatic infectious, the
treated, the vaccinated in vaccine target and non-vaccine target
populations.

5. CONCLUSION
Using an age-structured deterministic model that governs the
transmission dynamics and control of tuberculosis (TB) in the
presence of vaccination integrated into the eligible population,
the mathematical model presented in this study examines the dy-
namics of TB. Using the next-generation matrix approach, the
control reproduction number,Re, was calculated, which provided
a numerical indication of the potential for TB transmission in the
age-structured population; the qualitative analysis focuses on the
disease-free equilibrium point and the model control reproduc-
tion number. The sensitivity analysis of the model highlights the
most sensitive parameters for TB spread in the population. Fur-
thermore, numerical analysis provides some useful information
regarding the ways in which the vaccination rate and other im-
portant sensitive parameters affect the dynamics of TB transmis-
sion and control in an age-structured population. It is important
to mention that constant vaccination rate is incorporated to the
model analysed in this paper. Therefore, it is worth exploring
the model of TB dynamics incorporating time-dependent vacci-
nation by extending the model to an optimal control problem in
a future study.
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