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A B S T R A C T

Despite advancements in predictive modeling, existing methods struggle with accuracy and spatial variability in Land Surface
Temperature (LST) estimation. This study presents a Stacking Ensemble Model (SEM) integrating Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and k-Nearest Neighbors (KNN) to enhance LST prediction using Landsat 9 and SRTM DEM data
in Kogi State, Nigeria. The SEM outperformed individual models, achieving an R2 of 99.86%, surpassing RF by 3.31%, XGBoost
by 8.03%, and KNN by 12.79%. Results revealed significant spatial variability, with temperatures ranging from 24.8◦C to 49.3◦C
and critical hotspots above 40◦C covering 1,035 km2, supporting geothermal energy exploration. Incorporating elevation spectral
indices and key predictors like NDVI, proportion of vegetation, land surface emissivity, and brightness temperature further improved
accuracy. This SEM framework enhances predictive robustness, scalability, and spatial analysis for better LST modeling.
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1. INTRODUCTION
Surface Temperature (Ts), often called Land Surface Temper-
ature (LST), reflects land-atmosphere interactions and energy
transfer processes within the Earth’s interior. Understanding
LST is crucial for assessing heat flux, which is influenced by
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thermal conductivity and land cover properties. High thermal
conductivity materials, such as bare rock and urban surfaces, fa-
cilitate rapid heat transfer, leading to localized temperature in-
creases, whereas vegetative and water-covered areas moderate
temperature fluctuations by acting as thermal insulators [1, 2].
Despite advancements in satellite technologies such as Landsat
9 and SRTMDEM, challenges persist, including atmospheric in-
terference, spatial resolution limitations, and land-use dynamics,
necessitating innovative predictive frameworks for improved ac-
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curacy [3].
Studies have used datasets like Landsat and MODIS for

surface temperature estimations, emphasizing their respective
strengths. MODIS, with its high temporal resolution (daily re-
visit), effectively captures temperature dynamics over time but
has coarse spatial resolution (1 km), limiting fine-scale analy-
sis. In contrast, Landsat 9 offers high spatial resolution (30 m
for reflective bands and 100 m for thermal bands), allowing for
detailed temperature mapping, though with a lower temporal res-
olution (16-day revisit cycle) [4]. Researchers have integrated
MODIS and Landsat data to balance spatial and temporal trade-
offs [5–7]. Studies in Nigeria [6, 8] highlight the effectiveness of
Landsat data in analyzing urban heat islands and LST variations
caused by urbanization.
Landsat 9 and SRTM DEM, with their improved spatial and

spectral capabilities, provide new opportunities for precise sur-
face temperature estimation. However, as noted by [4, 9], their
full potential in geothermal energy exploration remains under-
utilized. Integrating high-resolution remote sensing data with
advanced machine learning models, particularly stacking ensem-
ble methods, can enhance predictive accuracy and detect thermal
anomalies.
Machine learning approaches, especially ensemble models,

have significantly improved the accuracy of surface tempera-
ture predictions by capturing complex spatial and temporal inter-
actions within environmental datasets. Studies employing ma-
chine learning algorithms, such as Random Forest (RF), Arti-
ficial Neural Networks (ANN), and Adaptive Neuro-Fuzzy In-
ference Systems (ANFIS), have demonstrated remarkable accu-
racy in predicting surface temperature [9–14] applied an Adap-
tive Neuro-Fuzzy Inference System (ANFIS) to predict surface
temperature with remarkable precision (R2 = 0.99). Ref. [14]
demonstrated the efficacy of stacking ensemble models by com-
bining tree-based algorithms such as LightGBM and XGBoost
with deep learning architectures like Convolutional Neural Net-
works (CNN). Studies by [9, 12] have further underscored the
potential of Random Forest (RF) and Artificial Neural Networks
(ANN) in surface temperature prediction, highlighting their scal-
ability and superior accuracy compared to traditional approaches.
Ensemble machine learning techniques, particularly stacking

models, have shown great promise in addressing the complexi-
ties of remotely sensed data prediction by integrating multiple al-
gorithms to harness their strengths. While single models such as
Random Forest [9], K-Nearest Neighbors (KNN) [14], and ANN
[10, 12] offer valuable insights, they often struggle to capture the
full extent of spatial variability, nonlinear interactions, and di-
verse environmental factors in surface temperature data. In con-
trast, stacking ensemblemodels, such as the framework proposed
by Ref. [14], combine multiple machines learning techniques,
including LightGBM, XGBoost, and CNN, to improve accuracy
and robustness, particularly in high-dimensional datasets. How-
ever, the application of these ensemble methods to surface tem-
perature modeling remains limited, with significant challenges
related to computational demands and the integration of high-
resolution remote sensing data [3, 13]
By combining outputs from RF, KNN, and XGBoost, stacking

ensembles enhance predictive accuracy, robustness, and gener-
alization, addressing the limitations of individual models. This

Figure 1. Location map of the study area.

aligns with the principle that no single machine-learning model
is optimal for all scenarios [15], making stacking ensembles a
powerful and adaptable tool for improving LST prediction.
Numerous studies have examined surface temperature dynam-

ics within urban and semi-urban settings, offering valuable in-
sights into the factors influencing temperature variations. Ref.
[16] documented significant surface temperature variations of up
to 10.9◦Cbetween urban and rural areas in Lokoja, driven by veg-
etation loss and urban expansion. Similarly, Ref. [6] observed
a 4.91◦C increase over 24 years in Akure, attributing the rise to
rapid urbanization. In Port Harcourt, Ref. [17] reported seasonal
surface temperature differences of 9.3◦C during the rainy season
and 4.8◦C in the dry season, highlighting the influence of veg-
etation and land-use dynamics on surface temperature in urban
environments. These investigations underscore the complex in-
terplay between urbanization and thermal environments, empha-
sizing the importance of sustainable urban planning to manage
surface temperature effectively.
This study seeks to address existing gaps by developing a ro-

bust and scalable stacking ensemble model for surface tempera-
ture prediction using spectral data of Landsat 9 and SRTM DEM
data. The proposed model integrates diverse environmental vari-
ables to enhance predictive accuracy and identify thermal anoma-
lies, including potential sites for geothermal energy exploration.
According to Ref. [18], surface temperatures as low as 40◦C are
considered indicative of geothermal potential; however, they cau-
tion that surface temperature alone is insufficient for accurately
assessing geothermal viability. By addressing these methodolog-
ical gaps, this study aims to make substantial contributions to the
fields of renewable energy exploration and environmental moni-
toring.

1.1. STUDY AREA
This study was conducted in Kogi State, Nigeria, encompassing
an area of approximately 29,833 km2. The state is geographically
situated between latitudes 6◦30′-8◦50′N and longitudes 5◦30′–
7◦50′E, as illustrated in Figure 1.
Kogi State is renowned for the confluence of the Niger and
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Benue Rivers at Lokoja, its capital. The region's varied eleva-
tion, ranging from -49 m to 701 m above sea level, supports a
wide range of activities, including agriculture, urban develop-
ment, geothermal energy exploration, and mining, all of which
significantly influence Surface Temperature.

The mapped hydrological features, such as rivers, lakes, allu-
vium and fractures, underscore the region’s potential for geother-
mal activity. This research provides critical insights into the
sustainable exploration of geothermal energy resources in Kogi
State.

2. MATERIALS AND METHODS
2.1. DATA SOURCE
The primary dataset for Land Surface Temperature (LST) anal-
ysis was obtained from Landsat 9 Tier 1 Surface Reflectance,
accessed via Google Earth Engine (GEE). Landsat 9, a joint mis-
sion by NASA and USGS, provides 30 m spatial resolution for
reflective bands and 100 m for Thermal Infrared (TIR) bands.
The dataset is pre-processed to correct for radiometric and ge-
ometric distortions, ensuring high-quality temporal and spatial
analysis of surface properties.

2.2. SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM) DEM
AND LANDSAT 9

The SRTM DEM, acquired by NASA’s Jet Propulsion Labora-
tory (JPL), provides 30 m resolution elevation data, accessible
via GEE [19]. In this study, SRTM DEM was used alongside
Landsat 9 spectral data to predict surface temperature across 21
major towns in Kogi State. Elevation spectral indices quantify
topographic variations using Digital Elevation Models (DEMs).
These indices influence LST prediction by affecting surface en-
ergy balance, airflow dynamics, and solar radiation distribution,
making them essential for accurate temperature modeling.

Landsat 9 and SRTM DEM were selected due to their high
spatial resolution, reliable temporal coverage, and suitability for
LST prediction and topographic analysis. Landsat 9 offers 30 m
multispectral and 100 m thermal resolution, significantly finer
than MODIS (1 km thermal resolution), enabling detailed LST
mapping [20]. Its 16-day revisit cycle ensures consistent mon-
itoring, unlike ASTER, which, despite its five thermal bands
at 90 m resolution, has limited global coverage and inconsis-
tent availability. Additionally, SRTM DEM’s 30 m resolution
provides better topographic representation than the freely avail-
able ASTER 90 m DEM [19]. Landsat 9 and SRTM DEM are
freely accessible via USGS and GEE, making them ideal for
cost-effective and reproducible studies. Their integration en-
hances LST estimation by incorporating elevation-driven tem-
perature variations, further justifying their selection overMODIS
and ASTER.

2.3. ANALYTIC PLATFORM
The data were processed and analyzed using the following plat-
forms:

i. Google Earth Engine (GEE): Used for pre-processing and
performing spatial computations on satellite imagery.

ii. Google Colab: Utilized for implementing machine learning
algorithms in a cloud-based Python environment.

iii. ArcGIS: Applied for map scaling.

Figure 2. Flow chart of the study.

2.4. DATA PREPROCESSING
The Land Surface Temperature (LST) estimation (Figure 2) was
conducted using Landsat 9 Tier 1 Surface Reflectance data in
Google Earth Engine (GEE). The Landsat 9 images were filtered
based on the Region of Interest (ROI), cloud cover (<1%), and
date range (January 2022 – June 2024). A median composite of
the selected images was created and clipped to the study area to
minimize cloud interference. Brightness Temperature (BT) was
derived from the Thermal Infrared (TIR) Band 10 using thermal
conversion coefficients. The Normalized Difference Vegetation
Index (NDVI) was then computed from the Near-Infrared (Band
5) and Red (Band 4) bands. Land Surface Emissivity (E) was
estimated from NDVI values, and the Planck function was ap-
plied to convert BT into LST in Kelvin, which was subsequently
converted to degrees Celsius.

Additionally, the Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) was downloaded and processed
to generate an elevation map of the study area. The DEMwas in-
tegrated with LST-derived variables, including Brightness Tem-
perature, Emissivity, Proportion of Vegetation, and NDVI, to en-
hance LST prediction accuracy. The classified LST maps were
then exported, and the total area covered by each temperature cat-
egory was calculated in square kilometers using pixel-based area
computations. This approach leverages the high spatial resolu-
tion of Landsat 9 and the topographic influence of SRTM DEM
to improve LST estimation, providing a robust methodology for
surface temperature analysis in the study area.

2.5. RADIOMETRIC CALIBRATION TO TOP OF ATMOSPHERE
(TOA) RADIANCE

Landsat 9 Tier 1 Surface Reflectance data include Top of Atmo-
sphere (TOA) radiance correction using the Land Surface Re-
flectance Code (LaSRC) algorithm, which removes aerosol and
Rayleigh scattering effects [21]. The thermal band 10 undergoes
atmospheric correction, ensuring accurate Land Surface Temper-
ature (LST) retrieval without additional adjustments. TheDN-to-
radiance conversion follows this equation:

Aλ = Lm x DN + RA, (1)
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where Aλ is the TOA radiance in watts per square meter per stera-
dian per micrometer

(
W /m2sr µm

)
, DN represents the digital

number value of each pixel RA is the radiance additive scaling
factor for the averaging Band 10

2.6. CONVERSION TO BRIGHTNESS TEMPERATURE
TOA radiance is converted to brightness temperatureBT ◦C using
the formula:

Tb =
K2

∈
(
K1
Aλ
+ 1
) − 273.15, (2)

where Tb is the brightness Temperature in (◦C), K1 and K2 are
brightness temperature constants, and Aλ is the TOA radiance.

2.7. NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI)
MAP

The land surface emissivity was determined using the Normal-
ized Difference Vegetation Index (NDVI), which differentiates
vegetated areas from non-vegetated ones. NDVI was calculated
using data from the red (Band 4) and near-infrared (Band 5)
bands

NDVI =
B5(NIR) − B4(Red)
B5(NIR) + B4(Red)

. (3)

2.8. PROPORTION OF VEGETATION
The proportion of vegetation was calculated using the NDVI val-
ues according to the following formula:

Vp = (NDVI − NDVImin/NDVImax − NDVImin)2 , (4)

where NDVI is Normalized Difference Vegetation Index,
NDVImin is minimum NDVI value, and NDVImax is maximum
NDVI value.

2.9. SURFACE EMISSIVITY (ε) CALCULATION
Surface emissivity (ε) was estimated based on vegetation propor-
tions derived from land cover characteristics using the formula:

ε = 0.004 × Pv + 0.986, (5)

where Pv is the proportion of vegetation in the study area.

2.10. LAND SURFACE TEMPERATURE CALCULATION
The final LST values were computed using the emissivity-
corrected brightness temperature and Planck’s radiative transfer
principles. This approach incorporated the central wavelengths
of Bands 10 and Planck’s constant to ensure precise temperature
estimation. The formula is:

Ts =
Tb

1 +
(
λ.BT
ρ

)
. ∈ (ε)

, (6)

where Tb is the brightness temperature in (◦C), λ is the central
wavelength of Band 10 (10.895 µm), ρ is the Planck’s constant
divided by the Boltzmann constant (14380), and ε is the calcu-
lated land surface emissivity.

3. MACHINE LEARNING MODELS FOR SURFACE
TEMPERATURE (TS) PREDICTION

3.1. ENSEMBLE LEARNING FOR SURFACE TEMPERATURE (TS)
REGRESSION

This study utilized ensemble learning methods, including Ran-
dom Forest [9] K-Nearest Neighbors (KNN) [14], and XGBoost,
to analyze the relationship between landsat 9 and SRTM DEM
spectral data in predicting Surface Temperature. Spectral data of
these imageries were used as predictors independent variables,
while surface temperature data was the dependent variable. A
stacking ensemble approach combined the outputs of RF, KNN,
and XGBoost, leveraging their complementary strengths to pro-
duce robust and accurate surface temperature (Ts) predictions
while capturing spatial variability.

3.2. RANDOM FOREST (RF)
Random Forest (RF) is a robust ensemble learning technique that
improves prediction accuracy by generating multiple decision
trees during the training process and aggregating their results [9].
For regression tasks, RF computes the average of the predictions
generated by each tree, a process that not only improves overall
accuracy but also reduces the risk of overfitting, thereby enhanc-
ing the model's generalizability (Cortes & Vapnik, 1995). RF re-
gression was adopted in this study to predict Land Surface Tem-
perature (LST). Notably, several researchers have employed RF
for LST regression tasks with remarkable success, achieving su-
perior performance [3, 9, 13, 19, 22]. The implementation of RF
facilitates a nuanced understanding of the underlying data pat-
terns, ultimately contributing to more reliable LST predictions
for the towns under scrutiny.

ŷ =
1
N

N∑
i=1

fi(x), (7)

where fi(x) represents the prediction of the ith tree, and N is the
total number of trees in the forest.

3.3. K-NEAREST NEIGHBORS (KNN)
KNN is a simple yet effective algorithm that predicts the label of
a sample by evaluating the majority label of its K-nearest neigh-
bors in feature space. Its merit lies in its non-parametric nature,
whichmakes it flexible for handling complex datasets without as-
suming underlying data distributions. Several authors have em-
ployed K-Nearest Neighbors (KNN) for surface temperature pre-
diction [12, 23]. This simplicity and adaptability have rendered
KNN a valuable tool for surface temperature prediction in vari-
ous geospatial and environmental applications.

ŷ =
1
k

k∑
i=1

yi, (8)

where yi is the value of the nearest neighbor.

3.4. EXTREME GRADIENT BOOSTING (XGBOOST)
The eXtreme Gradient Boosting (XGBoost) algorithm, known
for its scalability and precision, was applied to predict Land
Surface Temperature (LST). As an ensemble model, XGBoost
builds decision trees sequentially, enhancing predictive accu-
racy and reducing overfitting through regularization. Several
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Figure 3. Brightness temperature (Tb) map, (b) Natural difference vegeta-
tion index map (c) land surface emissivity map (ε) map (d) Proportion of
vegetation map (Pv) map (e) Elevation map.

researchers have successfully employed XGBoost for LST pre-
diction [13, 22, 24, 25]. This study implemented XGBoost us-
ing Python’s XGBoost library, with computations performed in
Google Colab.

3.5. STACKING ENSEMBLE MODEL (SEM)
Following regression on each of the base models, a stacking en-
semble model (SEM) was employed to integrate the predictions
of RF, KNN, and XGBoost. This approach assigned weighted
contributions to each algorithm based on their performance met-
rics, with a meta-learner trained on RF, KNN, and XGBoost out-
puts to produce the final LST predictions. By leveraging the
complementary strengths of these models, SEM enhanced pre-
dictive accuracy, robustness, and generalization. Similar ap-
proaches to SEM for machine learning have been successfully
utilized in previous studies [14, 26].

4. RESULTS
4.1. PREDICTOR MAPS
Figure 3 provides spatial representations of critical predictor
maps derived from Landsat 9 and SRTM DEM data, which form
the basis for surface temperature predictions.

4.1.1. Brightness temperature (Tb) map
Figure 3(a) illustrates the Brightness Temperature (Tb) map, ob-
tained from the thermal infrared band 10 of Landsat 9. The map
captures spatial variations in emitted thermal energy across the
study area, with Tb values ranging from 23.97◦C to 48.22◦C. No-
table patterns include urban heat islands exhibiting higher tem-
peratures and cooler zones associated with dense vegetation

4.1.2. Natural difference vegetation index (NDVI) map
Figure 3(b) presents the Normalized Difference Vegetation Index
(NDVI) map, with values spanning from - 0.115 to 0.438. High
NDVI values, predominantly in forested or less urbanized zones,
indicate dense vegetation, while low values highlight sparse veg-

Figure 4. Surface temperature map.

etation or urbanized areas. This distribution underscores vegeta-
tion’s moderating influence on surface temperature.

4.1.3. Land surface emissivity (ε) map
Figure 3(c) displays the Surface Emissivity map, with values
ranging from 0.986 to 0.99. High emissivity values, typically
in vegetated areas, indicate efficient thermal radiation emission,
which lowers surface temperatures. Conversely, urbanized or
barren areas with lower LSE values exhibit reduced emissivity,
leading to heat retention. Accurate emissivity mapping is criti-
cal for refining surface temperature calculations due to the direct
influence of emissivity on thermal radiation.

4.1.4. Proportion of vegetation map
Figure 3(d) illustrates the Proportion of Vegetation (Pv) map,
where values range from 0 to 1. High Pv values represent dense
vegetative cover, while low values denote minimal vegetation.
This map identifies zones susceptible to thermal stress and veg-
etation loss, emphasizing the inverse relationship between vege-
tation density and surface temperature.

4.1.5. Elevation map
Figure 3(e) displays the elevation map of the study area, with to-
pographic values ranging from - 49 m to 701 m. Regions with
negative elevation values represent depressions, which predomi-
nantly correspond to riverine areas.

4.2. ACTUAL SURFACE TEMPERATURE (TS) MAP
The predictor maps shown in Figure 3(a),(b),(c),(d) and (e) were
integrated using GEE to generate the actual surface temperature
map presented in Figure 4. The surface temperature values, rang-
ing from 24.84◦C to 49.27◦C, demonstrate notable spatial varia-
tions. This map offers essential insights into the thermal proper-
ties of the area.

4.3. STACKING ENSEMBLE MODEL FRAMEWORK
Figure 5 illustrates the SEM framework obtained from integrat-
ing the derived spectral maps in Figure 3. NDVI, Pv, ε, Ts, and
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Figure 5. SEM regression framework.

elevation were used as independent variables, while the actual
surface temperature spectral data served as the dependent vari-
able for the base models. The models were individually trained
using 5-fold cross-validation. The dataset was divided into five
subsets, with the model trained on four subsets (80%) and tested
on the remaining one (20%). This process was iterated to ensure
a robust performance evaluation.
The predictions from each base model were then weighted

within the SEM framework to generate the final output. The
framework demonstrates how the base models: Random Forest
Regressor (RF), eXtreme Gradient Boosting Regressor (XGB),
and K-Nearest Neighbors Regressor (KNN) were executed. The
outputs of the base models were combined using a meta-learner,
implemented as a Random Forest Regressor, to produce the final
predictions.
The Random Forest Regressor employed 50 decision trees

(n_estimators=50) and a fixed random state (random_state=42)
for reproducibility. The eXtreme Gradient Boosting Regres-
sor, known for advanced tree-based learning and scalability, in-
cluded features such as early stopping. KNN, a non-parametric
model, captured localized spatial patterns. The stacking ensem-
ble framework optimized model weights by assigning impor-
tance to each base model’s prediction using the meta-learner,
a Random Forest Regressor. The meta-learner leveraged fea-
ture importance and decision trees to adjust model contribu-
tions based on their predictive performance. The 5-fold cross-
validation strategy ensured model robustness by systematically
splitting the dataset into five subsets, with four used for training
(80%) and one for testing (20%), preventing overfitting and im-
proving generalizability. The SEM significantly enhanced pre-
dictive accuracy, outperforming the best-performing base model,
RF, by 3.31% (R2: 0.9986 vs. 0.9655), demonstrating the advan-
tage of the ensemble approach in refining LST predictions.
The SEM aggregates predictions from the base models, lever-

aging their complementary strengths. Random Forest excels in
handling non-linear interactions and is robust enough to overfit.
XGB offers precision in high-dimensional datasets, and KNN ef-
fectively captures local spatial relationships. This hierarchical
approach ensures robust and accurate predictions.
Figure 6 presents the predicted surface temperatures of the

study area as derived from the meta-model, SEM. The surface
temperatures are classified into three classes: high, medium,
and low. This classification provides a clear spatial representa-

Figure 6. Predicted surface temperature map of the study.

Figure 7. Surface temperature hotspot map.

tion of temperature variations, aiding in the mapping of potential
geothermal hotspots in Figure 7.
The stacking ensemble framework optimized model weights

through a meta-learner, specifically a Random Forest Regressor,
which assigned weights based on the predictive accuracy of each
base model. The base models—RF, XGBoost, and KNN—were
trained individually, and their predictions were used as inputs for
the meta-learner. The training process involved a 5-fold cross-
validation strategy, where the dataset was split into five subsets,
with four used for training (80%) and one for testing (20%), en-
suring robustness and preventing overfitting. This iterative vali-
dation approach provided a reliable performance assessment.
Table 1 summarizes the performance metrics of the predictive

models, while Figure 8 provides a bar chart visualization of the
models' performance.
To quantify the improvement of the SEM framework over the

best-performing base model, Table 1 demonstrates that SEM
achieved an R2 of 0.9986, which is a 3.31% improvement over
RF (0.9655), an 8.03% increase over XGBoost (0.9183), and a
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Table 1. Model performance metrics.
Model MAE MSE R2

RF 0.3421 0.5661 0.9655
XGBoost 0.4604 0.77 0.9183
KNN 0.5102 0.8573 0.8707
SEM 0.1257 0.1942 0.9986

Figure 8. Bar chart showing model performance metrics.

12.79% enhancement over KNN (0.8707). Additionally, SEM
reduced the Mean Absolute Error (MAE) and Mean Squared Er-
ror (MSE) significantly compared to individual models, confirm-
ing its predictive superiority. While computational efficiency
was considered, Google Colab’s processing capacity was suffi-
cient for model training and execution, and no significant limi-
tations were encountered in handling the dataset or running the
SEM framework.

5. DISCUSSION
This study highlights the effectiveness of integrating Landsat 9
spectral data and SRTM DEM with machine learning for LST
prediction. The SEM, combining RF, XGBoost, and KNN,
achieved an R2 of 99.86%, surpassing RF by 3.31%, XGBoost by
8.03%, and KNN by 12.79%. This supports prior studies on en-
semble learning in environmental modeling [4, 13, 15]. Given its
superior performance (MAE: 0.1257, MSE: 0.1942, R2: 0.9986),
hyperparameter tuning is unnecessary, as SEM effectively opti-
mizes pixel spectral selection.

The spatial analysis of LST patterns revealed critical thermal
variations influenced by vegetation cover, land surface emissiv-
ity (LSE), and elevation. Areas with high Normalized Difference
Vegetation Index (NDVI) and Proportion of Vegetation (PV) ex-
hibited lower surface temperatures due to the cooling effects of
vegetation, supporting existing literature [16, 17]. Conversely,
urban and barren landscapes experienced elevated temperatures
due to the urban heat island (UHI) effect [6]. This confirms the
need for sustainable urban planning and vegetation conservation
to mitigate excessive thermal loads.

Potential biases in spectral indices can impact Land Surface
Temperature (LST) predictions, particularly in regions with vary-
ing vegetation and land cover conditions. For instance, the Nor-
malized Difference Vegetation Index (NDVI), commonly used to
estimate emissivity, has limitations in arid and semi-arid regions
where sparse vegetation and exposed soil can lead to overesti-

mated or underestimated LST values [27] NDVI-based emissiv-
ity models assume a strong vegetation cover-temperature rela-
tionship, which may not hold in barren landscapes, causing inac-
curacies in temperature retrieval [28].

Similarly, other spectral indices like vegetation proportion
(Pv) and emissivity (varepsilon) are derived from NDVI, making
them susceptible to the same biases. Overestimation of vegeta-
tion cover in dry environments can lead to an underestimation of
LST, while underestimation in dense vegetation areas may result
in overestimated LST values. These biases can introduce uncer-
tainty in machine learning-based LST predictions, particularly in
heterogeneous landscapes.

The predictive robustness of SEM was validated by perfor-
mance metrics, achieving the lowest Mean Absolute Error (MAE
= 0.1257) and Mean Squared Error (MSE = 0.1942). This sup-
ports the argument that no single model is universally optimal,
but an ensemble approach effectively mitigates individual model
weaknesses [15]. Notably, the SEM performed exceptionally
well in extreme temperature conditions, which is crucial for LST
modeling and environmental impact assessments [9, 11]

The identification of high-temperature zones with a thresh-
old above 40◦C aligns with the geothermal potential criteria pro-
posed by Ref. [18]. This finding suggests that specific areas
warrant further geothermal exploration. However, geothermal
viability assessments require an integrative approach, incorporat-
ing subsurface thermal and geochemical analyses to complement
surface temperature observations.

These findings underscore the broader implications of LST
modeling in climate change mitigation, urban adaptation strate-
gies, and renewable energy exploration. Urban heat islands
(UHIs) intensify environmental challenges, necessitating policy
interventions such as afforestation, green roofing, and sustain-
able land-use management [7, 8]. The SEM framework’s ability
to capture fine-scale LST variations provides policymakers with
a valuable tool for climate adaptation planning and proactive en-
vironmental management [13].

6. CONCLUSION
This study successfully applied a stacking ensemble machine
learning framework to predict LST using Landsat 9 and SRTM
DEM data. By integrating multiple algorithms, the SEM model
achieved enhanced predictive accuracy outperformed individual
models, achieving an R2 of 99.86%, surpassing RF by 3.31%,
XGBoost by 8.03%, and KNN by 12.79% and capturing spatial
variations in surface temperature effectively. The results empha-
size the significant influence of vegetation cover, emissivity, and
elevation on LST distribution, reinforcing the necessity of sus-
tainable land-use practices in mitigating urban heat effects and
climate change impacts.

The study identified high-temperature zones with geothermal
potential, providing a foundational basis for targeted renewable
energy exploration. However, further geophysical and geochem-
ical investigations are required to assess the feasibility of geother-
mal resource exploitation. The findings also demonstrate the
transformative potential of machine learning in environmental
monitoring, offering a scalable and data-driven approach for cli-
mate adaptation and sustainable resource management.

Scaling SEM to larger datasets presents challenges, includ-
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ing high computational costs, memory limitations, and extended
training times due to multiple model executions and cross-
validation. Large-scale spectral data may exceed local process-
ing capacities, requiring cloud-based solutions. While hyperpa-
rameter tuning was unnecessary in this study, larger datasets may
demand optimization to prevent overfitting. Additionally, inte-
grating multi-source data across vast regions can be bandwidth-
intensive, especially when transferring outputs between plat-
forms like GEE and Colab. Addressing these issues requires
distributed processing, cloud computing, and optimized machine
learning frameworks.
The proposed SEM framework contributes to advancing LST

prediction methodologies, aligning with the growing demand for
interdisciplinary approaches in environmental science, renew-
able energy exploration, and climate resilience planning. Future
research should explore the integration of deep learning models
and additional environmental predictors to further enhance pre-
dictive accuracy and expand the applicability of the framework
across diverse geographic and climatic conditions.

RECOMMENDATIONS
Based on the findings, the following recommendations are pro-
posed:

1. Thermal anomalies in urban areas were innovatively de-
tected using ensemble learning with Landsat 9 TIR Band
10. While ground truth validation was not conducted in this
study, the findings establish a basis for future research to
validate and expand on these results.

2. Urban and Environmental Planning: Policymakers should
prioritize urban greening, afforestation, and the adoption of
reflective surfaces to mitigate the UHI effect and enhance
urban resilience.

3. Geothermal Energy Exploration: Identified high-
temperature zones should be further investigated using
geophysical techniques such as magnetotellurics and
resistivity surveys to assess geothermal resource viability.

4. Advancing Machine Learning Models: Future research
should integrate deep learning architectures, such as Con-
volutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks, to enhance the predictive capa-
bility of LST models (Xu & Wu, 2023a, 2023b).

5. Incorporation of Additional Predictors: Further studies
should incorporate environmental variables such as soil
moisture, land cover classification, and atmospheric param-
eters to improve model performance.

6. Scalability and Validation: The SEM framework should be
tested in diverse climatic and geological settings to evaluate
its generalizability and computational efficiency for large-
scale environmental modeling.

7. Climate Adaptation Strategies: Environmental agencies
should leverage SEM-based predictions to develop targeted
interventions for heatwave-prone regions, improving cli-
mate resilience and reducing thermal stress.

By addressing these recommendations, future research can
build on the current findings to enhance predictive modeling,
support sustainable energy resource management, and contribute
to climate change mitigation efforts.

DATA AVAILABILITY
The datasets generated and analyzed during the current study
are available from the corresponding author upon reasonable
request. Additionally, the code used in this study has been
archived in the Google Earth Engine Repository and can be ac-
cessed via the following link: https://code.earthengine.google.
com/314e5d2e21134094e0d5ea649448e93e.
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