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A B S T R A C T

This study investigates the unsteady Dean flow of dusty, viscous, incompressible fluids confined between two oscillating concentric
horizontal cylinders under a semi-analytical framework based on Laplace transformation, which is preferred over fully numerical
methods due to its ability to provide analytical expressions that enhance understanding of the system dynamics, reduce discretization
errors, and efficiently handle complex boundary conditions. The Laplace-domain solutions are numerically inverted using the
Riemann-sum approximation (RSA). The problem is modelled using the momentum and continuity equations for fluid and particulate
phases, incorporating the effects of azimuthal pressure gradients and oscillatory boundary conditions. The semi-analytical framework
is employed to derive the velocity profiles, skin frictions, and vorticity in the Laplace domain, which are then inverted to obtain
time-dependent solutions. Steady-state solutions for the velocity, skin frictions, and vorticity (for the case of oscillation with different
frequencies, non-oscillating cases, and oscillating with the same frequency) are obtained in closed forms to validate the method
employed at large time values. Key dimensionless parameters such as the mass concentration of dust particles, relaxation time,
dimensionless time, and angular velocities are explored to assess their impact on the flow dynamics. Results reveal that increasing
relaxation time parameters delay the velocity profile and helps fluid velocity in achieving equilibrium flow states. The findings
provide a benchmark for studies on industrial mixing, chemical reactors, and biomedical flows involving particle-laden fluids under
oscillatory conditions.
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1. INTRODUCTION
The study of fluid dynamics involving dusty fluids – fluids con-
taining solid particles suspended within them – has garnered sig-
nificant interest due to its relevance in both industrial applica-
tions and natural phenomena. One such intriguing problem is

∗Corresponding Author Tel. No.: +234-803-7662-510.
e-mail: yahayajd@custech.edu.ng (Jibrin Danjuma Yahaya)

the unsteady Dean flow, which arises when a fluid flows be-
tween two rotating or oscillating cylinders, creating a complex
secondary flow pattern due to the combined effects of centrifu-
gal and Coriolis forces. In curved geometries, secondary flow
structures (Dean vortices) emerge due to the imbalance between
centrifugal forces and pressure gradients, causing fluid particles
to move across streamlines and form counter-rotating vortices.
The introduction of dust particles further complicates the flow
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dynamics, as the particles interact with the fluid, altering its ve-
locity and pressure fields. This research aims to explore these
intricate interactions by developing a semi-analytical approach
to model the unsteady Dean flow of dusty fluids between two os-
cillating cylinders. The study provides valuable insights into the
behaviour of such systems, which can be applied to enhance the
design and efficiency of industrial processes such as chemical
reactors, centrifuges, and sedimentation tanks.
Understanding the unsteadyDean flow of dusty fluids between

oscillating cylinders has important applications across multiple
fields. In combustion systems, plasma flows, industrial trans-
port, and dust stormmodelling, particle-fluid interactions are key
to performance and safety. In the oil and gas industry, these in-
sights support the design of efficient particle separation systems,
improving operational efficiency and reducing costs. In biomed-
ical engineering, the findings apply to blood flow and drug deliv-
ery systems, aiding the design of devices like artificial hearts and
blood pumps. Additionally, in environmental engineering, they
help optimize sediment management and sedimentation tank de-
sign. Overall, this study provides a practical framework for pre-
dicting andmanaging dusty fluid behaviour in complex engineer-
ing systems. The motion of a gas carrying small dust particles
and its implications for various flow scenarios have been exten-
sively studied, with significant contributions from numerous re-
searchers.
Saffman [1] laid the foundation by formulating the equations

for the motion of a gas with small dust particles and analyzing
the stability of laminar flow. He found that fine dust destabi-
lizes gas flow while coarse dust stabilizes it, modifying the Orr-
Sommerfeld equation for a dusty gas. This work set the stage for
understanding how dust concentration and relaxation time influ-
ence flow stability. Building on Saffman’s work, Micheal and
Norey [2] extended the analysis to the motion of a dusty gas be-
tween two impulsively rotating coaxial cylinders. They derived
solutions for gas velocity and dust concentration, considering dif-
ferent time scales and boundary conditions, thus broadening the
understanding of rotational flows in dusty gases. Miller [3] fur-
ther explored the motion of dust particles around a vertically os-
cillating cylinder in an incompressible, viscous fluid. His ex-
plicit expressions for particle velocities and trajectories provided
insights into particle behavior in oscillatory flows, highlighting
the importance of particle size and oscillation parameters.
Reddy [4] investigated the laminar flow of an unsteady viscous

liquid with uniformly distributed dust particles through an ellip-
tic annulus. His analytical expressions for fluid and dust particle
flow under various pressure gradients expanded the applicabil-
ity of dusty gas flow models to different geometries. Gupta and
Gupta [5] focused on the flow of a viscous incompressible gas
with particles in circular and sectorial cylinders. Using opera-
tional calculus, they obtained exact velocities, providing numeri-
cal results for flow due to a constant pressure gradient and further
enriching the theoretical framework for dusty gas flow in cylin-
drical geometries. Mitra and Bhattacharyya [6] examined the
unsteady hydromagnetic laminar flow of an electrically conduct-
ing dusty fluid between two impulsively started parallel plates.
Their work highlighted the influence of dust concentration, re-
laxation time, and Hartmann number on velocity fields, show-
ing how magnetic fields can modulate dusty fluid flow. Ruk-

mangadachari and Arunachalam [7] studied the unsteady laminar
flow of a dusty fluid through a triangular cross-section cylinder,
examining harmonic and exponential pressure gradients. They
calculated velocity fields, flux, and skin friction drag, contribut-
ing valuable data for flows in non-circular cross-sections. Deb-
nath and Ghosh [8] explored the motion of an incompressible
viscous conducting fluid with small spherical particles between
two oscillating plates in a transverse magnetic field. Their ex-
act solutions using operational methods elucidated the impact
of oscillation time periods on fluid velocity, further integrating
magnetic effects into dusty fluid dynamics. Hamdan and Barron
[9] introduced a dusty fluid flow model in porous media, solving
numerically for flow in a rectangular cavity. Their comparisons
with clean fluid flow results underscored the differences caused
by dust particles in porous media, expanding the scope of dusty
fluid flow studies. Vajravelu and Nayfeh [10] analyzed the hy-
dromagnetic flow of a dusty fluid over a stretching sheet, reduc-
ing the motion equations to coupled non-linear ordinary differ-
ential equations and solving them numerically. They discussed
fluid-particle interaction, particle loading, and suction effects,
thereby addressing practical applications in stretching sheet sce-
narios. Hamdan and Barron [11] extended their previous work by
developing partial differential equations for dusty fluid flow in
porous media using volume-averaging techniques. They consid-
ered one-way and two-way interactions between phases, provid-
ing a comprehensive framework for analyzing dusty fluid flow
in porous structures.
Yang, Eidelman, and Lottati [12] studied unsteady shock-wave

reflection and diffraction over a semicircular cylinder in a dusty
gas using a multifluid Eulerian approach. Their model validation
with experimental data offered insights into the effects of parti-
cle size and loading on shock-wave configurations, bridging the
gap between theoretical models and experimental observations.
Datta and Dalal [13] investigated pulsatile flow and heat transfer
of a dusty fluid in an annulus of circular cylinders under pulsatile
pressure gradients. Using Saffman’s model, they provided ana-
lytical solutions, discussing velocity and heat transfer variations
with annular gap and oscillation frequency, thereby integrating
pulsatile flow dynamics into dusty fluid studies. Atria [14] ex-
amined the effect of variable viscosity on the transient flow of
a dusty fluid with heat transfer under a constant pressure gradi-
ent and a transversemagnetic field. Numerical solutions revealed
the impact of viscosity and magnetic field on flow and heat trans-
fer, emphasizing the role of variable properties in dusty fluid dy-
namics. Allan et al. [15] developed partial differential equations
for dusty fluid flow in variable porosity media, solving them nu-
merically for different porous media parameters. Their analysis
provided valuable insights into the effects of porous media char-
acteristics on dusty fluid flow.
Volkov and Tsirkunov [16]modeled supersonic dusty-gas flow

around a cylinder, accounting for particle-particle collisions and
feedback effects on gas parameters. They identified parameter
ranges where collisions and feedback are significant, contribut-
ing to the understanding of high-speed dusty gas flows. [17, 18]
conducted analytical studies on unsteady viscous dusty fluid flow
between parallel plates and through rectangular channels un-
der pulsatile pressure gradients. Using Laplace transform tech-
niques, they discussed velocity profiles and skin friction, thereby
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enhancing the theoretical models for unsteady dusty fluid flows.
Makinde and Chinyoka [19] explored the unsteady flow and heat
transfer of a dusty fluid between parallel plates with variable vis-
cosity and electric conductivity under a magnetic field. Using a
semi-implicit finite difference scheme, they discussed the effects
of wall slip, viscosity, and electric conductivity variations, thus
addressing complex interactions in dusty fluid flows.

Eguía et al. [20] investigated MHD Couette flow of a dusty
conducting fluidwith variable viscosity and electric conductivity.
They used the network simulation method (NSM) and Pspice to
solve the flow and heat transfer problems, analyzing the effects of
viscosity, magnetic field, particle concentration, and upper wall
velocity, thereby integrating modern computational techniques
into dusty fluid dynamics. This extensive body of work collec-
tively advances the understanding of dusty fluid dynamics, ad-
dressing various flow configurations, geometries, and influenc-
ing factors. The integration of magnetic fields, variable proper-
ties, and computational methods further enriches the theoretical
and practical knowledge in this domain.

2. PROBLEM STATEMENT AND MATHEMATICAL ANALYSIS
In this work, we consider the unsteady-state Dean flow of a vis-
cous, incompressible non-Newtonian dusty fluid in the annular
space between two infinite concentric oscillating cylinders under
a constant azimuthal pressure gradient. The inner and outer radii
of the cylinders are r1 and r2, respectively. Initially, at t∗ < 0, the
fluid and dust particles are at rest, and the flow is initiated by the
azimuthal pressure gradient and the oscillation of the boundary.
The flow occurs only in the annular region r2 − r1 (with r2 > r1),
and all physical variables, except for pressure, depend only on
the dimensionless radial coordinate r∗ and time t∗. The channel
is infinitely long, and the flow is assumed to be fully developed,
with the radial velocity component to be zero i.e vr = 0, and
the continuity equation depends solely on r∗ and t∗. The dynam-
ics of the dusty fluid and particles are described by the modified
Saffman’s equation [1, 21]:
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u∗r
r∗
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∂p
∂r∗
, (1)

ϱ
∂u∗

∂t∗
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1
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m
∂v∗

∂t∗
= K (u∗ − v∗) , (3)

with the initial and boundary conditions:

t ≤ 0 : u∗ = v∗ = 0 for r1 ≤ r∗ ≤ r2

t > 0
{
u∗ = a∗eiω1t∗ + b∗e−iω1t∗ at r∗ = r1
u∗ = c∗eiω2t∗ + d∗e−iω2t∗ at r∗ = r2,

(4)

where u∗ and v∗ are the velocities of the fluid and dust particle
respectively, ρ the density of the fluid, p is the pressure along the
azimuthal direction, t∗ the time, µ is the viscosity coefficient of
the fluid, K is the Stoke’s resistance coefficient 6πµa of spherical
particles of radius a, N is the density of the dust particles,mmass
of the dust particles, r1 and r2 are the radius of the inner and outer
cylinders, and ω1 and ω2 the oscillatory frequency of the inner
and outer cylinders respectively. The flow geometry is depicted

Figure 1. Configuration of the flow geometry.

as shown in Fig. 1. The azimuthal pressure gradient drives the
primary circumferential flow and, combined with curvature ef-
fects, induces secondary Dean vortices within the annular gap.

3. DIMENSIONAL ANALYSIS
Using the following dimensionless quantities [21, 22]:
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(5)

Equations (2) to (4) reduce to:
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∂v
∂t
=

1
τ

(u − v) , (7)

t ≤ 0 : u = v = 0 for 1 ≤ r ≤ λ

t > 0
{
u = aeiσ1t + be−iσ1t at r = 1
u = ceiσ2t + de−iσ2t at r = λ

,
(8)

where a, b, c, and d are complex constants such that u becomes
real on the boundary.

4. METHODOLOGY
4.1. UNSTEADY-STATE SOLUTIONS
4.1.1. Velocity profile
The solution of Equations (6) and (7) under the boundary condi-
tions of Equation (8) is sought using the Laplace transform tech-
nique. Applying Laplace transform technique [23, 24]:

L (u (r , t)) = ū (r , ς) =
∫ ∞

0
u (r , t) e−ςtdt , ς > 0, (9)

L (v (r , t)) = v̄ (r , ς) =
∫ ∞

0
v (r , t) e−ςtdt , ς > 0, (10)

Equations (6) to (8) yield

d2ū
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1
r
dū
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+ ς
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r2

]
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1
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, (11)

v̄ =
ū

1 + τς
, (12)
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ū = a
ς−iσ1

+ b
ς+iσ1

at r = 1
ū = c

ς−iσ2
+ d
ς+iσ2

at r = λ,
(13)

where ι is the mass concentration of the dust particles, τ is the
relaxation time parameter, σ1 and σ2 are oscillatory parameters
and ς is the Laplace parameter.
Using the transformation [25]:

ū (r , ς) = ūh (r , ς) +
1

rςA2 (14)

on Equation (11), then, the general solution, under the boundary
conditions of Equation (13) is given as:

ū (r , ς) = D1I1 (rA) + D2K1 (rA) +
1

rςA2 , (15)
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]
, (16)

Then, from Equation (12), the velocity of the dust particles is
given as:
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1
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1
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]
.

(17)

Case I: a , b , c , d , 0
Equations (15) and (17) are the velocity of the fluid and dust par-
ticles in the Laplace domain. D1 and D2 are constants obtained
by applying the boundary conditions Equation (13), we have:
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Case II: a = b = c = d = 0 (Static boundary)
For the special case of no impulsive motion at the boundary, the
velocity of the fluid and dust particles are given in Equations (20)
and (21) as follows:
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1
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ū

1 + τς

=
1

1 + τς

[
D3I1 (rA) + D4K1 (rA) +

1
rςA2

]
,

(21)
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. (23)

Case III: σ1 = σ2 = 0 (non-oscillating case)
For the case of non-oscillatory motion at the boundary, the ve-
locity of the fluid and dust particles are given in Equations (24)
and (25) in similar manners as follows:
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1
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(28)

Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)
For the case of oscillatory motion with equal frequency at the
boundary, the velocity of the fluid and dust particles are given in
Equations (29) and (30) in similar manners as follows:
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4.1.2. Skin frictions
The skin frictions between the fluid layers and of the dust parti-
cles in a concentric cylinder are given as follows:

χ̄|r =

(
dū
dr
−
ū
r

)∣∣∣∣∣∣
r

, (33a)

χ̄|rp =
1
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(
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ū
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r

. (33b)

Case I: a , b , c , d , 0
The skin frictions for the fluids and dust particles are obtained as
follows:

χ̄1 =
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Case II: a = b = c = d = 0

χ̄1 =
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(37b)

Case III: σ1 = σ2 = 0 (non-oscillating case)

χ̄1 =

(
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dū
dr
−
ū
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(38b)
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χ̄λp =
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−
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Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)

χ̄1 =

(
dū
dr
−
ū
r

)∣∣∣∣∣∣
r=1
= A [D7I2 (A) − D8K2 (A)] −

2
ςA2 , (40a)

χ̄λ =

(
dū
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−
ū
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2
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(40b)

χ̄1p =
1

1 + τς

(
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(41a)

χ̄λp =
1
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(
dū
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ū
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(41b)

4.1.3. Vorticity
The vorticity of the fluid flow is defined as the swirling motion
of the fluid. Since the fluid flow is in the azimuthal direction,
then the vorticity is the z-direction. The formulae are given as:

w̄z =
(
dū
dr
+
ū
r

)
, (42a)

and also, the vorticity of the dust particle is given by:

w̄zp =
1

1 + τς

(
dū
dr
+
ū
r

)
. (42b)

Case I: a , b , c , d , 0
Using the formulae of Equations (42a) and (42b), the vorticity of
the fluid and of the dust particle are given by:

w̄z = A [D1I0 (rA) − D2K0 (rA)] , (43a)

w̄zp =
1

1 + τς
(A (D1I0 (rA) − D2K0 (rA))) . (43b)
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Case II: a = b = c = d = 0
w̄z = A [D3I0 (rA) − D4K0 (rA)] , (44a)

w̄zp =
1

1 + τς
(A (D3I0 (rA) − D4K0 (rA))) . (44b)

Case III: σ1 = σ2 = 0 (non-oscillating case)
w̄z = A [D5I0 (rA) − D6K0 (rA)] , (45a)

w̄zp =
1

1 + τς
(A (D5I0 (rA) − D6K0 (rA))) , (45b)

Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)
w̄z = A [D7I0 (rA) − D8K0 (rA)] , (46a)

w̄zp =
1

1 + τς
(A (D7I0 (rA) − D8K0 (rA))) . (46b)

4.2. STEADY-STATE SOLUTIONS
The steady-state solutions are provided to validate the semi-
analytical Laplace domain solutions, as transient results are ex-
pected to converge to steady behaviour at large times. Closed-
form expressions for velocity, skin friction, and vorticity under
steady conditions (including non-oscillating and various oscillat-
ing cases) confirm the physical consistency and reliability of the
transient solutions and their numerical inversion.

4.2.1. Steady-state velocity profile
For steady-state solutions, ∂u

∂t = 0 and ∂v
∂t = 0 in Equations (6)

and (7), respectively, we have that:

us = vs, (33)

d2u
dr2 +

1
r
du
dr
−
u
r2 = −

1
r
. (34)

Case I: a , b , c , d , 0
Eq (34) is a non-homogeneous ordinary differential equation
called the Euler equation whose solution is given as:

us (r) = D9r +
D10

r
−
r
2

ln (r), (35)

D9 andD10 are constants obtained using the boundary conditions
of (8) and they are:

D9 =
2
{[
aeiσ1t + be−iσ1t

]
− λ

[
ceiσ2t + de−iσ2t

]}
− λ2 ln (λ)

2
(
1 − λ2) ,

D10 =
2
{
λ2

[
aeiσ1t + be−iσ1t

]
− λ

[
ceiσ2t + de−iσ2t

]}
− λ2 ln (λ)

2
(
λ2 − 1

) .

Case II: a = b = c = d = 0
For the case of no impulsive motion at the boundary, the steady-
state velocity is given as:

us (r) =
λ2r ln (λ)(
λ2 − 1

) − λ2 ln (λ)(
λ2 − 1

)
r
−
r
2

ln (r). (36)

For a = b = c = d = 0, the steady-state velocity of Eq (36) is the
velocity profile for transient Dean flow in an annulus as obtained
in the work of Ref. [22].

Case III: σ1 = σ2 = 0 (non-oscillating case)
For non-oscillation at the boundary, the steady-state velocity is
obtained similarly as:

us (r) = D11r +
D12

r
−
r
2

ln (r). (37)

D11 and D12 are obtained as:

D11 =
2
{
(a + b) − λ (c + d) − λ2 ln (λ)

}
2
(
1 − λ2) ,

D12 =
2
{
λ2 (a + b) − λ (c + d) − λ2 ln (λ)

}
2
(
λ2 − 1

) .

Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)
The steady-state velocity for when the frequency of oscillation
are equal is obtained as:

us (r) = D13r +
D14

r
−
r
2

ln (r). (38)

D13 =
2
[
(a − λc) eiσt + (b − λd) e−iσt − λ2 ln (λ)

]
2
(
1 − λ2) ,

D14 =
2
{
λ
[
(aλ − c) eiσt + (bλ − d) e−iσt

]
− λ2 ln (λ)

}
2
(
λ2 − 1

) .

4.2.2. Steady-state skin frictions
Using the same approach for the unsteady-state skin frictions, the
following skin frictions are derived for the different cases.

Case I: a , b , c , d , 0
The steady-state skin frictions at r = 1 and r = λ for case I is:

χs1 = r
d
dr

(us
r

)∣∣∣∣∣
r=1
= −2D10 −

1
2
, (39)

χsλ = r
d
dr

(us
r

)∣∣∣∣∣
r=λ
= −

2D10

λ2 −
1
2
. (40)

Case II: a = b = c = d = 0

χs1 = r
d
dr

(us
r

)∣∣∣∣∣
r=1
= −2D10 −

1
2
, (41)

χsλ = r
d
dr

(us
r

)∣∣∣∣∣
r=λ
= −

2D10

λ2 −
1
2
. (42)

Case III: σ1 = σ2 = 0 (non-oscillating case)

χs1 = r
d
dr

(us
r

)∣∣∣∣∣
r=1
= −2D12 −

1
2
, (43)

χsλ = r
d
dr

(us
r

)∣∣∣∣∣
r=λ
= −

2D12

λ2 −
1
2
. (44)

Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)

χs1 = r
d
dr

(us
r

)∣∣∣∣∣
r=1
= −2D12 −

1
2
, (45)

χsλ = r
d
dr

(us
r

)∣∣∣∣∣
r=λ
= −

2D12

λ2 −
1
2
. (46)
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4.2.3. Steady-state vorticity
The steady-state vorticity, in a similar manner, are obtained as
follows.

Case I: a , b , c , d , 0
On utilizing Eq (35), the steady-state vorticity of the fluid is cal-
culated thus:

wzs =
1
r
d
dr

(rus) = 2D9 −

(
ln (r) +

1
2

)
. (47)

Case II: a = b = c = d = 0

wzs =
1
r
d
dr

(rus) =
1 − λ2 − λ2 ln (λ)

2
(
λ2 − 1

) − ln (r). (48)

Case III: σ1 = σ2 = 0 (non-oscillating case)

wzs =
1
r
d
dr

(rus) = 2D11 −

(
ln (r) +

1
2

)
. (49)

Case IV: σ1 = σ2 = σ (Oscillating with the same frequency)

wzs =
1
r
d
dr

(rus) = 2D13 −

(
ln (r) +

1
2

)
. (50)

5. RIEMANN-SUM APPROXIMATIONS
The analytical Laplace inversion of Equations (15), (17), (20),
(21), (24), (25), (29), (30), (34a - 41b), and (43a – 46b) are
challenging due to their complexity. However, the RSA method
(Equations 51 – 55), as employed in refs. [26–28], efficiently
transforms solutions from the Laplace domain to the time do-
main.
L−1 [ū (r , ς)] = u (r , t)

=
eϵt

t

1
2
ū (r , ϵ) + Re

n∑
k=1

ū
(
r , ϵ +

ikπ
t

)
(−1)k

 , (51)

L−1 [v̄ (r , ς)] = v (r , t)

=
eϵt

t

1
2
v̄ (r , ϵ) + Re

n∑
k=1

v̄
(
r , ϵ +

ikπ
t

)
(−1)k

 , (52)

L−1 [
χ̄1 (r , ς)

]
= χ1 (r , t)

=
eϵt

t

1
2
χ̄1 (r , ϵ) + Re

n∑
k=1

χ̄1

(
r , ϵ +

ikπ
t

)
(−1)k

 , (53)

L−1 [
χ̄λ (r , ς)

]
= χλ (r , t)

=
eϵt

t

1
2
χ̄λ (r , ϵ) + Re

n∑
k=1

χ̄λ

(
r , ϵ +

ikπ
t

)
(−1)k

 , (54)

L−1 [
w̄z (r , ς)

]
= wz (r , t)

=
eϵt

t

1
2
w̄z (r , ϵ) + Re

n∑
k=1

w̄z

(
r , ϵ +

ikπ
t

)
(−1)k

 . (55)

In this numerical approach, functions in the ς-domain are con-
verted to the time domain. The term Re denotes the real part,
i =
√
−1 is the imaginary unit, n represents the number of terms

in the RSA (here n = 1000), and ϵ is the real part of the Bromwich
contour used for Laplace transform inversion. As per Ref. [29],
ϵ must enclose all branch points, with ϵt = 4.7 yielding optimal
results and faster convergence. The RSA method is validated by
computing steady-state velocity, shear stress, and vorticity.

Figure 2. Velocity of the fluid for different values of time t ,
(a = b = c = d = 0, σ1 = σ2 = 0, λ = 2.0, τ = 0, ι = 0).

Figure 3. Velocity of the fluid for different values of time t ,
(a = 0.1, b = 0.2, c = 0.3, d = 0.4, σ1 = σ2 = 0.5, λ = 2.0, τ = 0, ι = 0).

6. RESULTS AND DISCUSSION
In this section, findings from the computations using graphs ob-
tained fromMatlab are analysed extensively for the velocity pro-
file of the fluid and dust particles, skin frictions at r = 1 and
r = λ for the fluid and dust particles as well as the Dean vortici-
ties for the fluid and dust particles respectively.

6.1. VELOCITY PROFILE
In Fig. 2, the velocity profiles demonstrate a parabolic shape,
symmetric about the radial midpoint. As time progresses, the ve-
locity increases uniformly, beginning from zero, with no oscilla-
tory effects or boundary contributions. This behaviour is primar-
ily due to diffusion-driven momentum transfer within the fluid.
In contrast, when oscillatory boundary conditions are introduced,
the velocity profiles in Fig. 3 exhibit wave-like behaviour, break-
ing the symmetry observed in Fig. 2. These oscillatory effects
propagate through the fluid domain, indicating a dynamic inter-
play between diffusion and boundary-induced oscillations. The
combination of oscillatory parameters and boundary values adds
complexity to the velocity field.

When non-zero boundary constants are applied, the velocity
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Figure 4. Velocity of the fluid for different values of time t ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.0, λ = 2.0, τ = 0, ι = 0).

Figure 5. Velocity of the fluid for different values of time t ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, τ = 0, ι = 0).

profiles (Fig. 4) display a more pronounced parabolic shape,
with higher magnitudes compared to Figs. 2 and 3. The constant
boundary values uniformly enhance the flow magnitude across
the radial domain without introducing oscillations. Moreover,
when oscillatory forcing is combined with these boundary con-
stants, as shown in Fig. 5, the velocity profiles exhibit amplified
oscillatory behaviour. These oscillations are more pronounced
near the boundaries and gradually diminish toward the center.
Thus, the interaction between oscillatory forcing and en-

hanced boundary flow creates a more dynamic velocity field
compared to Fig. 3 and 4. The velocity profiles of dust parti-
cles under (Fig. 6) reveal a parabolic shape similar to the fluid
velocity in Fig. 2. However, the dust particles exhibit a delayed
response due to the relaxation parameter τ. Over time, the dust
particles gradually align with the fluid velocity, demonstrating
the impact of the relaxation dynamics.
Furthermore, with oscillatory boundary forcing and non-zero

boundary values, the velocity profiles of the dust particles (Fig.
7) show wave-like behaviour. While the oscillations are similar
to those in Figure 5 for the fluid, they are notably smoother due to
the influence of the relaxation parameter. This underscores the

Figure 6. Velocity of the dust particles for different values of time t ,
(a = b = c = d = 0.0, σ1 = σ2 = 0.0, λ = 2.0, τ = 1.0, ι = 1.0).

Figure 7. Velocity of the dust particles for different values of time t ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, τ = 1.0, ι = 1.0).

Figure 8. Velocity of the dust particles for different values of τ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, t = 0.8, ι = 1.0).

moderating effect of τ on the oscillatory dynamics of the dust
particles. The influence of the relaxation time τ on dust particle
velocity is evident in Fig. 8. As τ increases, the dust velocity
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Figure 9. Velocity of the dust particles for different values of ι,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, t = 0.8, τ = 1.0).

Figure 10. Velocity of the dust particles for different values of σ1,
(a = b = c = d = 0.5, σ2 = 0.5, λ = 2.0, t = 0.8, τ = 1.0, ι = 1.0).

becomes increasingly delayed in aligning with the fluid velocity.
This indicates that larger τ values result in greater resistance to
instantaneous changes, thereby slowing the response of the dust
particles to fluid motion.

The effect of mass concentration ι is illustrated in Fig. 9.
As ι increases, the coupling between the fluid and dust parti-
cles strengthens, leading to a closer alignment of dust velocity
with fluid velocity. This demonstrates the critical role of ι in
determining the degree of interaction between the two phases.
The parameter σ1 governs oscillations originating from the in-
ner boundary. As shown in Fig. 10, increasing σ1 intensifies
oscillatory behaviour near the inner boundary, though the effects
diminish toward the center. Similarly, σ2 controls oscillations
at the outer boundary. Fig. 11 demonstrates that increasing σ2
enhances oscillations near the outer edge, with limited propaga-
tion toward the center. Together, σ1 and σ2 dictate the overall
oscillatory dynamics within the fluid-dust system.

SKIN FRICTIONS

Figure 11. Velocity of the dust particles for different values of σ2,
(a = b = c = d = 0.5, σ1 = 0.5, λ = 2.0, t = 0.8, τ = 1.0, ι = 1.0).

Figure 12. Skin friction of the fluid at r = 1,
(a = b = c = d = 0, σ1 = σ2 = 0, τ = 0, ι = 0).

Skin friction of the fluid at r = 1
In Fig. 12, the skin friction of the fluid at r = 1 exhibits an initial
increase with time before stabilizing. This behavior is consistent
with the momentum diffusion process, where the absence of os-
cillatory boundary forcing and coupling terms results in a purely
diffusion-driven dynamic.

When non-zero boundary constants are applied, as in Fig. 13,
the skin friction magnitude increases significantly compared to
Fig. 12. The inclusion of boundary constants enhances the flow
strength near the surface, thereby increasing skin friction at the
boundary.

With oscillatory boundary conditions, the skin friction profile
becomes highly dynamic. Oscillatory forcing induces periodic
variations in skin friction, which are superimposed on the base
flow, resulting in an alternating increase and decrease in the fric-
tion magnitude. This reflects the interaction of oscillatory forc-
ing with boundary flow dynamics.

In Fig. 15, the dust particle skin friction at r = 1 increases
gradually with time. The relaxation parameter τ governs the de-
lay in alignment of dust velocity with the fluid, resulting in a
smoother time evolution of skin friction compared to the fluid.
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Figure 13. Skin friction of the fluid at r = 1,
(a = 0.1, b = 0.2, c = 0.3, d = 0.4, σ1 = σ2 = 0, τ = 0, ι = 0).

Figure 14. Skin friction of the fluid at r = 1,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, τ = 0, ι = 0).

Figure 15. Dust particle skin friction of the fluid at r = 1,
(a = b = c = d = 0, σ1 = σ2 = 0, τ = 1, ι = 1).

In contrast, with oscillatory boundary forcing (σ1 = σ2 = 0.5)
and non-zero boundary constants, as shown in Fig. 16, the skin
friction exhibits oscillations. The coupling between dust and

Figure 16. Dust particle skin friction of the fluid at r = 1,
(a = 0.1, b = 0.2, c = 0.3, d = 0.4, σ1 = σ2 = 0.5, τ = 1.0, ι = 1.0).

Figure 17. Dust particle skin friction of the fluid at r = 1,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, τ = 1.0, ι = 1.0).

fluid amplifies the effect of boundary oscillations, leading to pe-
riodic variations in skin friction. The dust particle skin friction
profile of Fig. 17 shows a more pronounced oscillatory pat-
tern. The combination of enhanced boundary flow and oscilla-
tory forcing intensifies the periodic nature of the skin friction
dynamics. The peaks and troughs are sharper compared to Figs.
15 and 16, indicating a stronger response to boundary conditions.
The impact of the relaxation parameter τ on dust particle skin

friction is evident in Fig. 18. As τ increases, the friction mag-
nitude decreases, and the response becomes delayed. This indi-
cates that larger τ values reduce the rate of alignment between
dust and fluid velocities, thereby weakening the skin friction at
the boundary.
Fig. 19 highlights the influence of ι on dust particle skin fric-

tion. Higher values of ι strengthen the coupling between fluid
and dust, resulting in an increase in skin friction magnitude. The
stronger coupling leads to amore rapid alignment of dust velocity
with the fluid, thereby increasing the boundary friction. As σ1
increases, the oscillatory behaviour of dust particle skin friction
intensifies near the boundary (Fig. 20). The peaks and troughs
become more pronounced, reflecting the greater influence of os-
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Figure 18. Dust particle skin friction of the fluid at r = 1 for different values
of τ, (a = b = c = d = 0.5, σ1 = σ2 = 0.5, t = 0.8, ι = 1.0).

Figure 19. Dust particle skin friction of the fluid at r = 1 for different values
of ι, (a = b = c = d = 0.5, σ1 = σ2 = 0.5, t = 0.8, τ = 1.0).

Figure 20. Dust particle skin friction of the fluid at r = 1 for different values
of σ1, (a = b = c = d = 0.5, σ2 = 0.5, t = 0.8, τ = 1.0, ι = 1.0).

cillatory forcing from the inner boundary.
Similarly, increasing σ2 (Figure 21) enhances the oscillatory

nature of the skin friction at r = 1, but the effect originates from

Figure 21. Dust particle skin friction of the fluid at r = 1 for different values
of σ2, (a = b = c = d = 0.5, σ1 = 0.5, t = 0.8, τ = 1.0, ι = 1.0).

Figure 22. Skin friction of the fluid at r = λ,
(a = b = c = d = 0, σ1 = σ2 = 0, τ = 0, ι = 0).

the outer boundary. Together, σ1 and σ2 determine the overall
oscillatory dynamics of the system, withσ1 dominating the inner
boundary and σ2 the outer boundary.

Skin friction at r = λ
Graphical analysis for the skin frictions at r = λ are given below
for the various governing dimensionless parameters.

In Fig. 22, the skin friction at r = λ exhibits a gradual increase
with time before stabilizing. The absence of oscillatory forcing
and coupling terms results in a behavior driven purely by radial
diffusion. The increase in skin friction reflects the build-up of
momentum near the boundary over time. When non-zero bound-
ary constants are introduced, as shown in Fig. 23, the skin fric-
tion magnitude increases significantly compared to Fig. 22. The
boundary constants enhance the overall flow strength at r = λ,
leading to a more pronounced increase in skin friction over time.

The inclusion of oscillatory boundary conditions in Fig. 24
results in highly dynamic skin friction profiles. The oscillatory
forcing introduces periodic variations in skin friction that are su-
perimposed on the increasing trend over time. These oscillations
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Figure 23. Skin friction of the fluid at r = λ,
(a = 0.1, b = 0.2, c = 0.3, d = 0.4, σ1 = σ2 = 0, τ = 0, ι = 0).

Figure 24. Skin friction of the fluid at r = λ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, τ = 0, ι = 0).

are a direct result of the boundary-induced wave-like dynamics
propagating towards r = λ.
For Fig. 25, the dust particle skin friction at r = λ increases

gradually with time. The relaxation parameter τ moderates the
response of dust particles, resulting in a smoother evolution com-
pared to the fluid. The increase in skin friction reflects the align-
ment of dust velocity with the fluid over time. When oscillatory
forcing and non-zero boundary constants are applied, as shown
in Fig. 26, the dust particle skin friction shows periodic oscilla-
tions superimposed on the increasing trend. These oscillations
are smoother than those observed in Fig. 24 due to the moderat-
ing effect of the relaxation parameter.
With a = b = c = d = 0.5 and σ1 = σ2 = 0.5, the skin friction

of dust particles at r = λ (Fig. 27) exhibits pronounced oscil-
latory behavior. The combination of enhanced boundary flow
and oscillatory forcing creates sharper oscillations compared to
Figs. 25 and 26. This highlights the interplay between boundary
effects and coupling dynamics in shaping the skin friction.
The influence of τ on dust particle skin friction is shown in

Fig. 28. As τ increases, the friction magnitude decreases, and
the response becomes more delayed. Larger τ values reduce the

Figure 25. Dust particle skin friction of the fluid at r = λ,
(a = b = c = d = 0, σ1 = σ2 = 0, τ = 1.0, ι = 1.0).

Figure 26. Dust particle skin friction of the fluid at r = λ,
(a = 0.1, b = 0.2, c = 0.3, d = 0.4, σ1 = σ2 = 0.5, τ = 1.0, ι = 1.0).

Figure 27. Dust particle skin friction of the fluid at r = λ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, τ = 1.0, ι = 1.0).

alignment between dust and fluid velocities, thereby weakening
the skin friction at r = λ.
Fig. 29 illustrates the effect of ι on skin friction. As ι in-
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Figure 28. Dust particle skin friction of the fluid at r = λ for different values
of τ, (a = b = c = d = 0.5, σ1 = σ2 = 0.5, t = 0.8, ι = 1.0).

Figure 29. Dust particle skin friction of the fluid at r = λ for different values
of ι, (a = b = c = d = 0.5, σ1 = σ2 = 0.5, t = 0.8, τ = 1.0).

creases, the coupling between fluid and dust becomes stronger,
resulting in higher skin friction at r = λ. This indicates that
mass concentration plays a significant role in enhancing the in-
teraction between the two phases. Increasing σ1 leads to more
pronounced oscillations in skin friction near r = λ, as shown in
Fig. 30. The peaks and troughs become sharper, reflecting the
influence of oscillatory forcing from the inner boundary.

Similarly, increasing σ2 amplifies the oscillatory behavior at
r = λ, as seen in Fig. 31. The oscillations originate from the
outer boundary, complementing the effects observed for σ1. To-
gether, these parameters govern the oscillatory dynamics of the
system, with distinct contributions from each boundary.

6.2. VORTICITY
Dean vorticity is the rotational velocity within the fluid. The
followings are graphical representation of the Dean vorticity for
the various dimensionless parameters governing the flow.

Fig. 32 illustrates the vorticity of the fluid for different values
of time t . The vorticity profiles are symmetric and increase with
time, depicting a steady build-up of rotational fluid dynamics
around r = 2.0. The absence of coupling and oscillatory terms

Figure 30. Dust particle skin friction of the fluid at r = λ for different values
of σ1, (a = b = c = d = 0.5, σ2 = 0.5, t = 0.8, τ = 1.0, ι = 1.0).

Figure 31. Dust particle skin friction of the fluid at r = λ for different values
of σ2, (a = b = c = d = 0.5, σ1 = 0.5, t = 0.8, τ = 1.0, ι = 1.0).

Figure 32. Vorticity of the fluid
(a = b = c = d = 0, σ1 = σ2 = 0, λ = 2.0, τ = 0, ι = 0).

results in a pure diffusion-dominated vorticity pattern, indicating
a direct dependence of vorticity magnitude on radial position and
time. For dust particles, Fig. 33 under similar conditions but with
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Figure 33. Vorticity of the dust particles
(a = b = c = d = 0.0, σ1 = σ2 = 0.0, λ = 2.0, τ = 0.5, ι = 1.0).

Figure 34. Vorticity of the dust particles
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, τ = 0.5, ι = 1.0).

Figure 35. Vorticity of the dust particles for different values of τ,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, t = 0.8, ι = 1.0).

τ = 0.5, ι = 1.0, the vorticity shows a gradual increase but with
a more moderated profile compared to the fluid. This is indica-
tive of the relaxation and coupling effects, where τ and ι soften

Figure 36. Vorticity of the dust particles for different values of ι,
(a = b = c = d = 0.5, σ1 = σ2 = 0.5, λ = 2.0, t = 2.0, τ = 1.0).

Figure 37. Vorticity of the dust particles for different values of σ1,
(a = b = c = d = 0.5, σ2 = 0.5, λ = 2.0, t = 0.8, τ = 1.0, ι = 1.0).

Figure 38. Vorticity of the dust particles for different values of σ2,
(a = b = c = d = 0.5, σ1 = 0.5, λ = 2.0, t = 0.8, τ = 1.0, ι = 1.0).

the intensity and rate of change of vorticity due to the interac-
tion between the dust particles and the fluid. With Fig. 34, the
vorticity for dust particles shows dramatic oscillations superim-
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posed on the increasing trend, reflecting the combined effect of
oscillatory forcing and boundary values. This interaction results
in more complex, dynamically varying vorticity profiles that sig-
nify strong boundary and initial condition influences.

Vorticity’s response to different values of τ of Fig. 35 demon-
strates a clear dependency on the relaxation time. Higher τ values
result in more subdued vorticity oscillations, suggesting that in-
creased relaxation times dampen the dynamic response of dust
particles to the fluid’s motion.

Changes in mass concentration (ι) as demonstrated in Fig. 36
also significantly affect the vorticity of dust particles. An in-
crease in ι results in higher vorticity magnitudes, showing that
stronger coupling between fluid and particles amplifies the rota-
tional dynamics at the given radial position.

The variation of σ1 as depicted in Fig. 37 shows a pronounced
effect on vorticity, with increased values leading to more intense
and higher-frequency oscillations. This indicates the strong im-
pact of inner boundary – driven oscillatory inputs on the vorticity
profiles of dust particles. Similarly, in Fig. 38, changing σ2 ad-
justs the vorticity profiles, particularly influencing how these os-
cillations manifest near the outer boundary. An increase in σ12
intensifies the oscillatory behavior, highlighting its role in dic-
tating the outer boundary conditions’ influence on dust particle
dynamics. Overall, the vorticity profiles reveal that secondary
flow structures, specifically Dean vortices, emerge as a direct re-
sponse to the curved geometry of the cylinders. These structures
result from the relationship between centrifugal forces and the
azimuthal pressure gradient, contributing to the complex rota-
tional behaviour of the flow within the annular region.

7. CONCLUSIONS
Unsteady-state Dean flow formation of a non-Newtonian fluid in
an annulus where the boundary oscillates with an angular veloc-
ity of σ1 and σ2 respectively. The physical mathematical mod-
els governed by momentum and continuity equations are non-
dimensionlized using dimensionless parameters. The dimen-
sionless equations are solved using two-step approach based on
Laplace transformation and RSA of Laplace inversion. Velocity
of the fluid, dust particles velocity, skin frictions at r = 1 and
r = λ, and Dean vorticities of the fluid and dust particles are ob-
tained in Laplace domain and for validations, the corresponding
steady-state solutions are obtained in closed form. The most sig-
nificant results are summarized as follows. They are itemized as
thus:

1 Under non-oscillatory boundary conditions, the fluid veloc-
ity is primarily governed by diffusion processes, showing a
smooth, parabolic increase in velocity profiles across the ra-
dial domain.

2 Introduction of oscillatory boundary conditions results in
dynamic, wave-like velocity profiles, indicating a strong de-
pendence of fluid dynamics on boundary-driven oscillatory
inputs.

3 The relaxation time significantly decreases the velocity re-
sponse of dust particles, leading to a delayed alignment with
the fluid velocity.

4 Increased mass concentration enhances the velocity of the
dust particles.

5 Skin friction at r = 1 increases with non-zero boundary
constants, reflecting the direct impact of boundary strength
on near-wall fluid behavior.

6 Oscillatory boundary conditions introduce periodic fluctua-
tions in skin friction, underlining the influence of boundary
conditions on near-wall turbulence characteristics.

7 Skin friction at r = λ shows a time-dependent increase, with
a stabilized profile over longer periods, indicating a steady
state reached by the system under constant conditions.

8 The impact of τ and ι on skin friction at this radial position
reveals how these parameters dampen or amplify the fric-
tional forces at the boundary, affecting the overall system
stability.

9 Vorticity in the fluid exhibits a symmetrical build-up cen-
tered around the middle of the radial domain, driven pri-
marily by diffusion processes.

10 The magnitude of vorticity increases over time, indicating a
progressive intensification of rotational fluid dynamics.

11 Oscillatory boundary conditions significantly affect the
vorticity of dust particles, introducing complex, high-
frequency oscillations that reflect the dynamic interaction
between the particles and the fluid’s oscillatory nature.

12 Higher values of τ tend to suppress these oscillations, show-
ing the relaxation parameter’s critical role in moderating the
dust particles’ rotational response.

LIMITATION OF THE STUDY AND FUTURE WORK
This study has certain limitations, including the assumption of
uniform particle size and the neglect of fluid compressibility,
which may affect accuracy in real-world applications. Future
work should address these factors by incorporating variable par-
ticle sizes, compressible fluid effects, and extending the model
to three-dimensional geometries. Experimental validation is also
recommended to confirm the model’s practical reliability.

DATA AVAILABILITY
The data will be available on request from the corresponding au-
thor.
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