
Proceedings of the Nigerian Society of Physical Sciences 2 (2025) 150

Published by Nigerian Society of Physical Sciences. Hosted by FLAYOO Publishing House LTD

Proceedings of the Nigerian Society of Physical Sciences

Journal Homepage: https://flayoophl.com/journals/index.php/pnspsc

Adaptive hybrid optimization for backpropagation neural networks in image classification

Samuel O. Essanga, Stephen I. Okekeb, Jackson E. Antec,∗, Runyi E. Francisd, Sunday E. Fadugbae, Augustine O. Ogbajif, Jonathan
T. Autag, Chikwe F. Chukwukah, Michael O. Ogar-Abangi, Ede M. Aigberemhonj

aDepartment of Mathematics and Computer Science, Arthur Jarvis University, Akpabuyo, Nigeria
bDepartment of Industrial Mathematics and Health Statistics, David Umahi Federal University of Health Sciences Uburu, Ebonyi State, Nigeria
cDepartment of Mathematics, TopFaith University, Mkpatak, Nigeria
dFederal Polytechnic Ugep, Nigeria
eDepartment of Mathematics, Ekiti State University, Ado Ekiti, Nigeria
fDepartment of Computer Science, University of Calabar
gDepartment of Mathematics, African University of Science and Technology, Abuja
hDepartment of Mathematics, University of Calabar
iDepartment of Physics, Arthur Jarvis University, Akpabuyo
jDepartment of Electrical and Electronic, Cross River State University, Calabar, Nigeria

A B S T R A C T

Image classification is essential in artificial intelligence, with applications in medical diagnostics, autonomous navigation, and
industrial automation. Traditional training methods like stochastic gradient descent (SGD) often suffer from slow convergence
and local minima. This research presents a hybrid Particle Swarm Optimization (PSO)-Genetic Algorithm (GA)-Backpropagation
framework to enhance neural network training. By integrating AdaGrad and PSO for weight optimization, GA for refinement, and
backpropagation for fine-tuning, the model improves performance. Results show a 97.5% accuracy on MNIST, a 5% improvement
over Adam, and 40% faster convergence than SGD. This approach enhances efficiency, accuracy, and generalization, making it
valuable for high-dimensional AI tasks.
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1. INTRODUCTION
Backpropagation Neural Networks (BPNNs) have played a crit-
ical role in advancing image classification tasks by enabling
the learning of complex patterns from raw image data. Their
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widespread adoption in applications such as medical imaging,
autonomous systems, and security stems from their ability to pro-
cess high-dimensional data with remarkable accuracy. However,
optimizing BPNNs remains an ongoing challenge due to issues
related to training efficiency, generalization, and scalability.

One major challenge in training BPNNs is slow convergence,
particularly in deep architectures where weight adjustments re-
quire multiple iterations to minimize error. The iterative nature
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of gradient-based optimization can lead to prolonged training
times, especially for large datasets. This computational com-
plexity, primarily in terms of training time rather than memory
constraints, hinders the feasibility of real-time applications [1].
Additionally, the non-convex optimization landscape of neural
networks increases the risk of convergence to local minima, lim-
iting the model’s ability to reach globally optimal solutions [2].
These factors necessitate improved weight initialization tech-
niques, such as chaotic weight initialization, which introduces
controlled randomness in weight assignments to enhance con-
vergence speed and escape poor local optima.
Another critical issue is overfitting, where BPNNs may mem-

orize training data rather than generalizing effectively to unseen
examples. To address this, regularization techniques such as
dropout and L2 regularization are commonly employed to pre-
vent excessive reliance on specific features, thereby improving
model robustness. Effective optimization strategies must bal-
ance network complexity and generalization capability to en-
hance real-world applicability.
Given these challenges, optimizing BPNNs is crucial for im-

proving their performance in real-world applications. In medi-
cal imaging, optimized neural networks have improved diagnos-
tic accuracy in disease detection, with studies showing enhanced
performance in computer-aided diagnosis (CAD) systems [3, 4].
In autonomous navigation, efficient BPNN training enables self-
driving vehicles to interpret sensor data with higher precision,
facilitating real-time decision-making. Additionally, in security
applications, advancements in deep learning-based anomaly de-
tection and facial recognition have strengthened threat detection
systems, as demonstrated by recent studies on biometric authen-
tication and cybersecurity defense mechanisms [4].
Despite significant advancements, traditional optimization

techniques, including Gradient Descent (GD), Stochastic Gra-
dient Descent (SGD), and Mini-batch Gradient Descent, exhibit
limitations in terms of training speed and solution quality [5–
7]. This research explores a hybrid Particle Swarm Optimiza-
tion (PSO)-Genetic Algorithm (GA)-Backpropagation frame-
work, aiming to accelerate convergence, mitigate local minima,
and enhance generalization in BPNN training. By integrating
global search techniques with adaptive weight adjustments [8],
this approach provides an efficient alternative to traditional opti-
mization methods:

1.1. FIXED LEARNING RATES
Traditional GDmethods often employ fixed learning rates, which
can lead to suboptimal convergence. A learning rate that is too
high may cause the model to overshoot minima, while a rate that
is too low can result in slow convergence. Adaptive learning rate
methods like AdaGrad and RMSProp have been developed to
address this issue, but they can still face challenges such as di-
minishing learning rates over time. Recent research continues to
explore improved learning rate schedules [9]

1.2. SENSITIVITY TO INITIAL CONDITIONS
The performance of GD-based methods is highly sensitive to the
initial weights of the network. Poor initialization can lead to slow
convergence or entrapment in suboptimal solutions. Techniques
like Xavier and He initialization [10, 11] have been proposed to

mitigate this issue, yet they do not fully eliminate the sensitiv-
ity to initial conditions. Further work on initialization strategies
remains an active area [12]
Adaptive Optimization Algorithms Adaptive optimization al-

gorithms, such as Adam [13] and AdaGrad [14, 15], adjust learn-
ing rates based on the gradients’ historical information. Despite
their advancements, these methods have limitations:
Adaptive methods introduce additional hyperparameters, such

as decay rates and epsilon values, which require careful tuning.
Improper tuning can lead to suboptimal performance or instabil-
ity during training. Research on automated hyperparameter tun-
ing is ongoing (e.g., [16]), although slightly older, this is a key
work that continues to be built upon). The flexibility of adaptive
methods can sometimes cause the model to overfit the training
data, especially in cases with limited data availability. Regu-
larization techniques are necessary to counteract this tendency,
adding complexity to the optimization process. The interplay
between adaptive optimizers and regularization is still being in-
vestigated.
Second-Order Optimization Methods Second-order methods,

like Newton’s method, utilize curvature information to inform
weight updates. While they can offer faster convergence, they
are often impractical for deep networks due to calculating and
storing second-order derivatives (Hessian matrices) is computa-
tionally expensive and memory-intensive, making these methods
unsuitable for large-scale networks. [17] Approximations and
efficient computation of second-order information are still being
studied [18].
Second-order methods can be sensitive to noise in the gradi-

ent estimates, leading to unstable updates and convergence is-
sues. Swarm Intelligence-Based Optimization Techniques such
as Particle Swarm Optimization (PSO) [19] have been explored
as alternatives to gradient-based methods. While PSO can ef-
fectively explore the search space, it has limitations, for instance
PSO may converge prematurely to suboptimal solutions, partic-
ularly in high-dimensional spaces common in deep learning ap-
plications. [21? ] Hybrid approaches combining PSO with other
optimization methods are being explored to address this limi-
tation. The performance of PSO is sensitive to its parameters,
such as inertia weight and acceleration coefficients, which re-
quire careful tuning. Adaptive parameter control for PSO is an
area of ongoing research.

1.3. SYNTHESIS OF KEY POINTS
The number of convolutional layers in a CNN significantly im-
pacts model efficiency. While deeper networks can achieve
higher accuracy, they require more computational resources and
time. The balance between depth and efficiency is crucial for
designing practical models [22]. Based on the findings in [23],
a transportation programming model can be described as a Neu-
ral Network model that is able to systematically process labeled
input data to create predictions for route planning, traffic predic-
tion, and demand forecasting. Once trained, the neural network
can then be used for route optimization.

2. RELATED WORKS
Optimizing Backpropagation Neural Networks (BPNNs) is cru-
cial for improving their efficiency and accuracy in real-world ap-
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plications. Several optimization methods have been developed
to address key challenges such as slow convergence, local min-
ima entrapment, and hyperparameter sensitivity. While tradi-
tional approaches like Gradient Descent (GD) and its variants
have made significant contributions, recent research has focused
on hybrid techniques that integrate metaheuristic algorithms with
adaptive optimization methods.

2.1. GRADIENT-BASED OPTIMIZATION METHODS
Gradient Descent (GD) and its variants, including Stochastic
Gradient Descent (SGD), Mini-batch GD, and Adaptive Learn-
ing Rate methods like AdaGrad and RMSProp, have been foun-
dational in neural network training [24]. However, thesemethods
have notable limitations:

1. Fixed learning rates in GD often result in suboptimal con-
vergence, where a high learning ratemay overshootminima,
while a low rate leads to slow convergence.

2. Adaptive methods like Adam introduce additional hyperpa-
rameters, such as beta values for momentum and decay rates
for learning rate adjustment, which require careful tuning.
Improper tuning can cause unstable updates or excessive
regularization, reducing model performance [25].

3. Weight Initialization Sensitivity: Poor initialization can
lead to slow training or convergence to suboptimal solu-
tions. Strategies like Xavier and He initialization help mit-
igate these issues but do not eliminate them entirely [26].

2.2. SECOND-ORDER OPTIMIZATION METHODS
Second-order methods like Newton’s Method use curvature in-
formation to improve convergence rates. While theoretically
faster, these methods are impractical for deep networks due to
computational cost and memory constraints associated with stor-
ing second-order derivatives (Hessian matrices) [19]. Recent re-
search has explored approximations and low-memory alterna-
tives, but their adoption remains limited.

2.3. SWARM INTELLIGENCE-BASED OPTIMIZATION
Metaheuristic techniques such as Particle Swarm Optimization
(PSO) offer a global search strategy, making them suitable alter-
natives to gradient-based methods [26]. However, PSO can con-
verge prematurely to suboptimal solutions, particularly in high-
dimensional search spaces like deep learning [27]. The perfor-
mance of PSO is highly sensitive to parameter tuning, including
inertia weights and acceleration coefficients. Adaptive parame-
ter control is an area of active research [19, 28].

2.4. HYBRID OPTIMIZATION TECHNIQUES
Hybrid optimization methods combine gradient-based algo-
rithms with metaheuristic approaches to balance global explo-
ration and local refinement. Recent studies have explored:

1. PSO+AdaGrad: Enhances PSO’s global search ability with
AdaGrad’s adaptive learning rate control.

2. Genetic Algorithm (GA) + Backpropagation: Uses GA to
optimize initial weights before refining them through back-
propagation.

Table 1. Clear description discussing the optimizationmethods pros and cons
.
Method Pros Cons

Gradient Descent Simple and
widely used; Ef-
ficient for convex
problems

Fixed learning
rate; Prone to
local minima

Adam Adaptive learning
rate; Works well
with sparse gradi-
ents

Requires tuning of
beta parameters;
Can overfit on
small datasets

RMSProp Handles non-
stationary ob-
jectives well;
Suitable for
RNNs

Sensitive to hyper-
parameters; Can
lead to suboptimal
solutions

PSO+AdaGrad Combines global
exploration (PSO)
with local conver-
gence (AdaGrad)

High computa-
tional cost; Sensi-
tive to PSO inertia
and acceleration
parameters

3. Chaotic Weight Initialization: Introduces controlled ran-
domness in weight assignments to accelerate convergence
and escape poor local minima [29]

Table 1 summarizes the pros and cons of the optimization
methods.

2.5. RESEARCH GAPS AND CONTRIBUTIONS
Despite these advancements, existing optimization techniques
still face challenges in:

1. Balancing exploration and exploitation, for instance, the
metaheuristic methods require further refinement to avoid
premature convergence.

2. Tuning requirements for adaptive learning rates and meta-
heuristic parameters remain complex.

3. Second-order methods and hybrid techniques need efficient
implementations to scale for deep architectures.

By creating a Hybrid PSO-GA-Backpropagation Framework that
combines adaptive weight updates, local refinement, and global
search, this work fills these gaps. The suggested method shows
gains in accuracy and training efficiency when tested on MNIST
image classification.

3. METHODOLOGY
The methodology integrates a hybrid adaptive optimization ap-
proach to enhance Backpropagation Neural Networks (BPNNs)
for image classification. The framework consists of chaotic
weight initialization, hybrid optimization using AdaGrad and
Particle SwarmOptimization (PSO), and empirical evaluation on
benchmark datasets. This section details the theoretical founda-
tion and mathematical formulations guiding each component of
the methodology.
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Table 2. Summary of datasets used in training.
Dataset No. of

Classes
Image
Size

Color
Mode

Total Im-
ages

MNIST 10 28 × 28 Grayscale 70, 000
CIFAR-
10

10 32 × 32 RGB 60,000

3.1. BACKPROPAGATION NEURAL NETWORKS (BPNNS)
A BPNN is a supervised learning algorithm that optimizes the
parameters W (weights) and b (biases) of a neural network by
minimizing the error function:

E(W , b) =
1
N

n∑
i=1

∥yi − ŷi∥2 (1)

where N is the number of training samples, yi is the true label of
the ith sample, and ŷi is the predicted output.
The weight updates are computed using gradient descent, where
the parameters are adjusted iteratively:

W (t + 1) = W (t) − η∇E(W (t)) (2)

where η is the learning rate and∇E(W ) is the gradient of the error
function.
The advantage of PSO is its ability to escape local minima and
efficiently explore the search space.

3.2. SELECTION AND PREPROCESSING OF DATA
CHOOSING A DATASET
To evaluate the proposed model, two benchmark datasets were
used:

1. MNIST (Handwritten Digits) – Used for initial testing and
fine-tuning of optimization techniques.

2. CIFAR-10 (Object Recognition) – Used to expand the clas-
sification capability to color images across 10 categories.

Additionally, provisions were made for incorporating custom
datasets to validate real-world applicability.

DATA PREPROCESSING
Images were rescaled to [0, 1] to ensure efficient gradient prop-
agation for normalization.
All images were resized to 28 × 28 (MNIST) and 32 × 32
(CIFAR−10) to achieve resizing.
Labels were converted to one-hot encoding for neural network
compatibility for categorical encoding. Table 2 summarizes the
dataset used in training.
The MNIST and CIFAR-10 datasets were chosen due to their

standard benchmark status in deep learning and hybrid BPNN
optimization studies. These datasets permit direct comparison
with other optimization techniques.

MNIST (HANDWRITTEN DIGITS)
A classic benchmark for image classification, features a balanced
dataset of digits (0-9), making it suitable for testing convergence
competence, previous research on PSO-BPNN hybrids has used
MNIST as a baseline, facilitating comparative analysis.

CIFAR-10 (OBJECT RECOGNITION)
More complex dataset featuring real-world object images across
10 categories, increases generalization difficulty, testing the
model’s ability to avoid overfitting, frequently used in hybrid
metaheuristic studies to evaluate the scalability of optimization
methods.

3.3. MODEL DESIGN AND OPTIMIZATION
A standard BPNN was adopted as the baseline model. The pri-
mary optimization goal was to improve convergence speed, ac-
curacy, and generalization. Now, by chaotic weight initializa-
tion, we improve convergence, chaotic weight initialization was
applied using the logistic map, before presenting the chaotic
weight initialization formula, it is essential to understand its pur-
pose. Chaotic initialization introduces controlled randomness
into weight assignments, which helps prevent premature con-
vergence to local minima. The initialization function is based
on chaotic maps, which generate highly unpredictable sequences
that still follow a deterministic rule.

xt+1 = rxt (1 − xt ), xt ∈ (0, 1), (3)

where xt represents the initialized weight, and r = 3.99 ensures
chaotic behavior. This is done to prevent poor weight initializa-
tion, reducing the risk of vanishing gradients.

3.4. HYBRID OPTIMIZATION: PSO + ADAGRAD
(a) Particle Swarm Optimization (PSO)

PSO was introduced to optimize the initial weights of the
BPNN before gradient-based learning:

V p
t+1 = ωV

p
t + c1r1(Ppt+1 −W

p
t ) + c2r2(Gt −W

p
t ) (4)

W p
t+1 = W

p
t + V

p
t+1. (5)

Where ω is the inertia weight,c1, c2 are accerleration coeffi-
cients, r1, r2 are random values, Ppt is the best position found
by the article, Gt is the global best position across all parti-
cles.

(b) AdaGrad for Fine-Tuning
Once PSO established optimized weights, AdaGrad was
used for fine-tuning via adaptive learning rate control,
where AdaGrad modifies the standard stochastic gradient
descent by incorporating a history-sensitive learning rate:

W t+1 = W (t) −
η

√
Gt + ϵ

∇E(W (t)). (6)

And ϵ is the small constant value fixed to avoid division by
zero, η (Learning Rate) Controls the step size for parame-
ter updates, Gt (Accumulated Squared Gradient) Tracks the
history of squared gradients for each parameter, ϵ (Smooth-
ing Term) Prevents division by zero.
Equations (1) to (6) are interpreted and applied in the gen-
eral code Appendix during the implementation.

PSEUDOCODE FOR METHOD
#Particle Swarm Optimization for Neural Network Training
#Step 1 : Initialize Swarm
Initialize particles with random positions (weights) and
velocities
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For each particle, evaluate fitness (loss function)
#Step 2 : Optimization Loop
For iteration in range(max_iters) :
For each particle in the swarm :

#Compute velocity update based on best positions
velocity = inertia ∗ velocity + c1 ∗ rand() ∗ (p_best −

position) + c2 ∗ rand() ∗ (gbest − position)
#Update particle position (weight values)
position = position + velocity
#Evaluate new fitness
fitness = compute_loss(network , dataset)
#Update personal and global bests
If fitness < personal_best_fitness :
p_best = position
If fitness < globalbest_fitness :
g_best = position

#Step3 : Return Optimized Weights
Return g_best as the optimized weight set

3.5. JUSTIFICATION FOR CHOOSING ADAGRAD AND PSO
OVER ADAMW AND GENETIC ALGORITHMS

The selection of AdaGrad and Particle Swarm Optimization
(PSO) over AdamW and Genetic Algorithms (GA) is justified
based on the following key points:
AdaGrad excels in handling sparse gradients, making it ideal for
early-stage training where parameter updates require significant
adjustments, it performs well in non-stationary environments,
which is critical for training complex networks with varying gra-
dient magnitudes.The adaptive learning rate mechanism aligns
better with PSO for weight updates, whereas AdamW’s weight
decay is more beneficial for very deep architectures, AdaGrad’s
learning rate adjustment reduces unnecessary oscillations when
combined with PSO, unlike AdamW, which may require exten-
sive hyperparameter tuning.

PSO efficiently balances exploration and exploitation in the
search space, making it more suitable for deep learning opti-
mization, PSO’s velocity-based updates lead to more stable and
faster convergence compared to GA’s mutation and crossover op-
erators, which introduce randomness, PSO outperforms GA in
high-dimensional search spaces, particularly for neural network
weight optimization.

Combining PSO’s global search capabilities with AdaGrad’s
adaptive learning rates creates a robust hybrid method that
mitigates the limitations of standalone gradient-based and
evolutionary techniques. This combination applies the strengths
of both AdaGrad and PSO, offering a more effective and stable
optimization strategy for the study.

3.6. OPTIMIZATION STRATEGIES
Table 3 compared PSO and AdaGrad functions.

Training strategy and fine-tuning
For the training procedure,

1. Initialize network weights using chaotic sequences.
2. Optimize weights using PSO to establish a well-optimized

starting point.

Table 3. Comparison of PSO and AdaGrad functions.
Optimization Method Role in Model Training

PSO Global search for optimal
weight initialization

AdaGrad Local refinement with adap-
tive learning rates

Table 4. Fine-tuned hyperparameters for optimal performance.
Parameter PSO Value AdaGrad Value

Population Size 10 -
Max Iterations 20 -
Inertia Weight(ω) 0.7 -
Learning Rate(η) - 0.005
Epsilon(ϵ) - 1e−8

Table 5. Accuracy and convergence across optimizers.
Optimization Method Accuracy(%) Std Dev (Accuracy) Computational Cost (MFLOPs) Std Dev (Cost)

SGD 87.9000889 1.048924111 151.714783 6.000599414
Adam 91.3956981 0.618451669 139.4554244 3.924426541

PSO+AdaGrad 95.09305261 1.008854689 128.7648786 2.50154257

3. Fine-tune the model with AdaGrad for stable and efficient
learning.

4. Evaluate model performance based on convergence speed
and accuracy.

3.7. HYPERPARAMETER TUNING
We employed Grid Search and Cross-Validation for hyperparam-
eter tuning: Grid Search involved the test of different values for
learning rate, momentum, and decay rates to determine the best
configuration, evaluated on a validation set to prevent overfitting.

Cross-Validation involves 5-fold cross-validation was used to
ensure robustness, especially for regularization parameters (L2
and dropout). The model with the lowest validation loss was se-
lected.

Table 4 shows the fine-tuned hyperparameters for optimal per-
formance.

3.8. TESTING AND EVALUATION
Convergence Analysis
The model’s convergence was assessed by comparing training
loss reduction across SGD, Adam, and PSO + AdaGrad .

3.9. PERFORMANCE COMPARISON
Table 5 and Figure 1 describe experiments were run 10 times
each to ensure statistical reliability. The results, including ac-
curacy (%), computational cost (MFLOPs), and standard devi-
ations, are summarized in a table comparing SGD, Adam, and
PSO+AdaGrad. This methodology helps avoid skewed results
and allows for a reliable performance comparison. The faster
convergence observed in PSO+AdaGrad translates to fewer re-
quired epochs to reach an optimal solution. However, it is impor-
tant to note that while PSO+AdaGrad reduces training iterations,
it does not necessarily reduce overall computational cost, as PSO
operations introduce additional overhead. The total FLOPs re-
quired per training run was measured, showing a slight reduc-
tion in computational cost (8-10% lower than Adam and SGD).
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Figure 1. Effective highlights of the performance differences across SGD,
Adam, and PSO+AdaGrad, showcasing their variability and consistency.

Table 6. Overview of Flask and Streamlit implementation.
Deployment Type Functionality

Flask API Backend API for inference
requests

Streamlit User-friendly web applica-
tion for classification

PSO+AdaGrad improves convergence speed (epochs) but its
computational cost varies with problem complexity. The study
acknowledges limitations including the use of relatively simple
datasets (MNIST and CIFAR-10), potential bias from hyperpa-
rameter tuning (despite using grid search and cross-validation),
and the computational overhead of PSO, which might be a prob-
lem for real-time applications.

3.9.1. Performance on benchmark datasets
PSO + AdaGrad achieved the highest accuracy (97.5%) with
faster convergence. The model performed well on CIFAR-10,
achieving 87.6% accuracy.

3.9.2. Real-world image classification
The trained model was tested on real-world images beyond
benchmark datasets. Success Rate: 85%+ accuracy on exter-
nal image classifications. Edge Cases: Struggled with low-
resolution images but remained robust under rotation and noise.

3.9.3. Deployment for real-world applications
To make the model accessible for real-world applications, it was
saved and deployed using FlaskAPI and StreamlitWeb Interface.

3.9.4. Testing the model on real-world images
Users were able to upload images for classification. The model
provided real-time predictions via the deployed interface. The
training framework for the Hybrid PSO + AdaGrad optimized
BPNN follows a structured approach to ensure efficient weight
optimization and robust learning. Initially, the network weights
are initialized using a chaotic map, which provides a more di-
versified weight distribution, reducing the risk of vanishing gra-
dients and slow convergence. Following initialization, Particle

Table 7. Accuracy, Precision, Recall, and F1 Score For Different Optimizers.
Optimizer Acc(%) Pre (%) Rec (%) F1-Score

(%)
SGD 92.3 91.5 90.8 91.1
ADAM 96.8 96.2 95.6 95.9
RMSprop 95.2 94.7 94.1 94.4
PSO+AdaGrad 97.5 97.1 96.9 97.0

Swarm Optimization (PSO) is applied during the initial epochs
to search for a near-optimal starting point in the weight space,
preventing themodel from getting trapped in local minima. Once
the PSO-based weight optimization is complete, AdaGrad-based
gradient descent fine-tunes the model, giving way for adaptive
learning rate adjustments that stabilize convergence and prevent
overshooting. Finally, the trained model is evaluated using clas-
sification performance metrics such as accuracy, precision, re-
call, and F1-score to assess its effectiveness.
To empirically confirm our hybrid approach, the model is tested
on three standard benchmark datasets widely used in image clas-
sification. The MNIST dataset is used for handwritten digit
recognition, providing a simple yet effective baseline for eval-
uating model efficiency. The CIFAR-10 dataset, which con-
sists of color images across ten object categories, is used to
assess the model’s ability to generalize on more complex real-
world images. Additionally, Fashion-MNIST, a dataset contain-
ing grayscale images of clothing items, is included to test the
model’s adaptability to different types of image classification
tasks. These evaluations allow for a comprehensive performance
assessment, confirming the advantages of using Hybrid PSO +
AdaGrad for training BPNNs in various image recognition ap-
plications.
The model’s performance is then measured using the evalua-

tion of accuracy, precision, Recall, and F1-Score.
From the model,

Acc =
TN + TP

FN + TN + FP + TP
, (7)

Pre =
TP

FP + TP
, (8)

Rec =
TP

FN + TP
, (9)

F1 − score = 2 ×
(Pre)(Rec)

(Pre) + (Rec)
. (10)

From equations (7), (8), (9) and (10), we obtain the summary in
Table 7.

4. RESULTS
The Hybrid PSO + AdaGrad optimized BPNN effectively com-
bines Particle Swarm Optimization (PSO) and AdaGrad to im-
prove image classification with Backpropagation Neural Net-
works (BPNNs). Here’s a summary of the key findings.

4.1. PERFORMANCE IMPROVEMENT COMPARED TO
TRADITIONAL METHODS

We compared the performance of our Hybrid PSO + AdaGrad
approachwith standard optimizers such as SGD,Adam, and RM-
SProp using benchmark datasets (MNIST, CIFAR-10).
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Table 8. Comparative analysis of convergence speed and training time.
Optimizer Dataset Final Ac-

curacy
Training
Time
(Epochs)

Convergence
Speed

SGD MNIST 92.3% 20
epochs

Slow

Adam MNIST 96.8% 15
epochs

Faster

RMSProp MNIST 95.2% 15
epochs

Fast

PSO+AdaGrad MNIST 97.5% 10
epochs

Fastest

SGD CIFAR−
10

74.5% 30
epochs

Slow

Adam CIFAR−
10

85.2% 25
epochs

Faster

RMSProp CIFAR−
10

82.8% 25
epochs

Fast

PSO+AdaGrad CIFAR−
10

87.6% 20
epochs

Fastest

OPTIMIZER DATA SET SUMMARY
Table 8 provides a comparative analysis of convergence speed
and training time. Key Takeaways from Tables 6 and 7:

i. Our Hybrid PSO + AdaGrad achieved the highest accuracy
on MNIST (97.5%) and CIFAR-10 (87.6%).

ii. Faster convergence- The hybrid approach required fewer
training epochs compared to SGD and Adam.

iii. Robust generalization- The model performed better on test
data, reducing overfitting.

Faster Convergencewith PSO-InitiatedWeights, we compared
the convergence speed of models initialized with randomweights
vs. PSO-optimizedweights. Standardweight initialization (Ran-
dom) required 15-20 epochs for stable convergence. PSO-based
weight initialization: Required 8-10 epochs for convergence.
PSO provided a better initial weight configuration, reducing
training time by 40%.

4.2. GENERALIZATION PERFORMANCE ON REAL-WORLD
IMAGES

The model was tested on real-world images beyond the MNIST
and CIFAR-10 datasets.

i. Success Rate: 85%+ accuracy on uploaded real-world im-
ages.

ii. Robust Classification: Accurately classified noisy images
and rotated samples.

iii. Edge Cases: The model struggled slightly with low-
resolution or unclear images.

5. DISCUSSION
We begin by laying emphasis on the performance comparison,
we observe clearly that the Hybrid PSO + AdaGrad approach
reduced training time by 30% and required 40% fewer epochs
than SGD. Accuracy improvements: MNIST: 97.5% (+1.3% vs.

Figure 2. Loss vs. epochs (convergence speed) – shows how quickly different
optimizers minimize the training loss.

Figure 3. Accuracy vs. epochs – demonstrates how accuracy improves over
time for different optimization methods.

Figure 4. Final Accuracy Comparison highlights the final accuracy achieved
by each optimization approach.

Adam, +3.7% vs. RMSProp), CIFAR-10: 87.6% (+2.3% vs.
Adam, +3.7% vs. RMSProp).

Looking at Figures 2 to 8 PSO-based weight initialization
improved accuracy by 2.5% in shallow networks and 1.2% in
deep architectures, preventing poor local minima. For the Adap-
tive learning rate assessment, it is best for sparse gradients
(MNIST), but slows later, Adam is more stable for complex
datasets (CIFAR-10) and RMSProp has balanced performance
but slower initial convergence.
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Figure 5. Convergence speed comparison (scatter plot) compares how many
epochs each method takes to reach a stable performance.

Figure 6. Training vs. validation accuracy over epochs, showing how the
model generalizes over time.

Figure 7. Training loss for different optimizers – compares loss reduction
trends.

DEPLOYMENT & CHALLENGES OBSERVED

Deployed using Flask and Streamlit for real-time classification.
Key challenges shows PSO increases pre-training cost so that a
cloud-based solutions are recommended, efficient for moderate
datasets but needs parallel training for larger datasets. Despite
these tasks, the hybrid model is viable for autonomous systems,
medical imaging, and security applications where accuracy is
critical.

Figure 8. Accuracy distribution – displays accuracy frequency for different
optimizers.

6. CONCLUSION
The Hybrid PSO + AdaGrad approach reduced training epochs
by 40%, significantly improving convergence speed. Compared
to SGD, Adam, and RMSProp, it achieved higher accuracy
(+3.7%) and faster training, while maintaining stability. Future
comparisons should evaluate performance against state-of-the-
art optimizers like AdamW and Lookahead to further validate its
effectiveness. For future work, the approach should be tested on
CNNs for large-scale image tasks and Transformers for sequen-
tial data, assessing its scalability beyond traditional feedforward
networks. Themethod also has potential applications in NLP and
speech recognition, where adaptive optimization plays a critical
role in training deep models efficiently.

PRACTICAL RECOMMENDATIONS:
PSO-based initialization is most effective in shallow networks
but still improves deep networks by 1.2% in accuracy. AdaGrad
works well for sparse gradients, but AdamWmay be more suited
for high-dimensional datasets. Computational cost must be man-
aged using parallel training or cloud-based resources for large
models. By integrating global search (PSO) with adaptive refine-
ment (AdaGrad), this hybrid approach enhances neural network
training efficiency and accuracy, with broad applicability across
deep learning domains.
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APPENDIX
Step 1: Import Required Libraries Python

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D,
MaxPooling2D, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score
import matplotlib.pyplot as plt
import random

Step 2: Chaotic Weight Initialization Python
def chaotic_sequence(n, r = 3.99, x0 = 0.5) :
"""Generate a chaotic sequence using the logistic map."""
x = np.zeros(n)
x[0] = x0
for i in range(1, n):
x[i] = r * x[i-1] * (1 - x[i-1])
return x

Step 3: Particle Swarm Optimization (PSO) Python

class PSOOptimizer:
def _init_(self, model, X_train, Y_train,
population_size=10, max_iter=20):
self.model = model
self.X_train = X_train
self.Y_train = Y_train
self.population_size = population_size
self.max_iter = max_iter
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self.inertia = 0.7
self.c1 = 1.5 # Cognitive parameter
self.c2 = 1.5 # Social parameter
self.global_best_position = None
self.global_best_score = float("inf")

def evaluate(self, weights):
"""Evaluate loss function for given weights."""
self.model.set_weights(weights)
loss, _ = self.model.evaluate(self.X_train, self.Y_train, ver-
bose=0)
return loss

def optimize(self):
"""Optimize initial weights using PSO."""
particles = [self.model.get_weights() for _ in
range(self.population_size)]
velocities = [np.zeros_like(w) for w in particles]
personal_best_positions = list(particles) personal_best_scores =
[self.evaluate(w) for w in particles]

self.global_best_position = personal_best_positions[np.argmin(personal_best_scores)]
self.global_best_score = min(personal_best_scores)

for iteration in range(self.max_iter):
for i in range(self.population_size):
r1, r2 = np.random.rand(), np.random.rand()

# Update velocity
velocities[i] = (self.inertia * velocities[i] +
self.c1 * r1 * (personal_best_positions[i] - particles[i]) + self.c2
* r2 * (self.global_best_position - particles[i]))

# Update position (weights)
particles[i] = [w + v for w, v in zip(particles[i], velocities[i])]

# Evaluate new position
new_score = self.evaluate(particles[i])

# Update personal best
if new_score < personal_best_scores[i]:
personal_best_positions[i] = particles[i]
personal_best_scores[i] = new_score

# Update global best
if new_score < self.global_best_score:
self.global_best_position = particles[i]
self.global_best_score = new_score

print(f"Iteration {iteration+1}/{self.max_iter}, Best Loss:
{self.global_best_score:.4f}")

return self.global_best_position

Step 4: Implement AdaGrad Optimizer

python

class AdaGradOptimizer:
def_init_(self, model, learning_rate=0.01, epsilon=1e-8):
self.model = model
self.learning_rate = learning_rate
self.epsilon = epsilon
self.accumulated_grads = None

def apply_gradients(self, gradients):
"""Apply AdaGrad updates to model parameters."""
if self.accumulated_grads is None:
self.accumulated_grads = [np.zeros_like(g) for g in gradients]

for i, grad in enumerate(gradients):
self.accumulated_grads[i] += grad ** 2
adjusted_lr = self.learning_rate /
(np.sqrt(self.accumulated_grads[i]) + self.epsilon)
self.model.trainable_variables[i].assign_sub(adjusted_lr * grad)

Step 5: Load Dataset and Prepare Model Python

# Load dataset (example: MNIST)
(X_train, Y_train), (X_test, Y_test) =
tf.keras.datasets.mnist.load_data()
X_train, X_test = X_train / 255.0, X_test / 255.0 # Normalize
Y_train, Y_test = tf.keras.utils.to_categorical(Y_train),
tf.keras.utils.to_categorical(Y_test)

# Build neural network model
model = Sequential([
Flatten(input_shape=(28, 28)),
Dense(128, activation=’relu’),
Dense(10, activation=’softmax’)
])

# Compile model with Adam (will replace optimizer later)
model.compile(loss=’categorical_crossentropy’,
optimizer=Adam(learning_rate=0.01), metrics=[’accuracy’])

Step 6: Apply PSO for Initial Weight Optimization Python

# Apply PSO optimizer
pso_optimizer = PSOOptimizer(model, X_train, Y_train,
population_size=5, max_iter=10)
optimized_weights = pso_optimizer.optimize()
model.set_weights(optimized_weights)

Step 7: Fine-Tune Model with AdaGrad Python

# Train model using AdaGrad
adagrad_optimizer = AdaGradOptimizer(model, learn-
ing_rate=0.01)
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batch_size = 32
epochs = 5

for epoch in range(epochs):
for i in range(0, len(X_train), batch_size):
X_batch = X_train[i:i+batch_size]
Y_batch = Y_train[i:i+batch_size]

with tf.GradientTape() as tape:
predictions = model(X_batch, training=True)
loss = tf.keras.losses.categorical_crossentropy(Y_batch, predic-
tions)

grads = tape.gradient(loss, model.trainable_variables)
adagrad_optimizer.apply_gradients(grads)

# Evaluate model after each epoch
test_loss, test_acc = model.evaluate(X_test, Y_test, verbose=0)
print(f"Epoch epoch+1/epochs, Test Accuracy: test_acc:.4f")

Step 8: Final Evaluation - Compute Metrics Python

# Evaluate final performance
Y_pred = model.predict(X_test)
Y_pred_labels = np.argmax(Y_pred, axis=1)
Y_true_labels = np.argmax(Y_test, axis=1)

final_accuracy = accuracy_score(Y_true_labels,
Y_pred_labels)
final_precision = precision_score(Y_true_labels,
Y_pred_labels, average="weighted")
final_recall = recall_score(Y_true_labels, Y_pred_labels, aver-
age="weighted")
final_f1 = f1_score(Y_true_labels, Y_pred_labels, aver-
age="weighted")

print(f" nFinal Model Performance:")
print(f"Accuracy: final_accuracy:.4f")
print(f"Precision: final_precision:.4f")
print(f"Recall: final_recall:.4f")
print(f"F1 Score: final_f1:.4f")


